Electricity generation from rice bran in microbial fuel cells

Shu Takahashi , Morio Miyahara , Atsushi Kouzuma , Kazuya Watanabe

Bioresources and Bioprocessing ›› 2016, Vol. 3 ›› Issue (1) : 50

PDF
Bioresources and Bioprocessing ›› 2016, Vol. 3 ›› Issue (1) : 50 DOI: 10.1186/s40643-016-0129-1
Short Report

Electricity generation from rice bran in microbial fuel cells

Author information +
History +
PDF

Abstract

Background

Rice bran is a by-product of the rice milling process and mostly discarded in Japan. Although many studies have shown that microbial fuel cells (MFCs) are able to generate electricity from organic wastes, limited studies have examined MFCs for generating electricity from rice bran.

Findings

Laboratory-scale single-chamber MFCs were inoculated with paddy field soil and supplied with rice bran for examining electricity generation. Power outputs and microbiome compositions were compared between MFCs containing pure water as the liquid phase (MFC-W) and those containing mineral solution (MFC-M). Polarization analyses showed that both MFCs successfully generated electricity with the maximum power densities of 360 and 520 mW m−2 (based on the projected area of anode) for MFC-W and MFC-M, respectively. Amplicon-sequencing analyses revealed that Trichococcus and Geobacter specifically occurred in anode biofilms in MFC-W and MFC-M, respectively.

Conclusions

The results suggest that rice bran is a feasible fuel by itself for generating electricity in MFCs.

Keywords

Rice bran / Exoelectrogen / Pyrosequencing / Lactobacillales / Desulfuromonadales

Cite this article

Download citation ▾
Shu Takahashi, Morio Miyahara, Atsushi Kouzuma, Kazuya Watanabe. Electricity generation from rice bran in microbial fuel cells. Bioresources and Bioprocessing, 2016, 3(1): 50 DOI:10.1186/s40643-016-0129-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25: 3389-3402.

[2]

Alves AS, Paquete CM, Fonseca BM, Louro RO. Exploration of the ‘cytochrome’ of Desulfuromonas acetoxidans, a marine bacterium capable of powering microbial fuel cells. Metallomics, 2011, 3: 349-353.

[3]

Baek G, Kim J, Cho K, Bae H, Lee C. The biostimulation of anaerobic digestion with (semi) conductive ferric oxides: their potential for enhanced biomethanation. Appl Microbiol Biotechnol, 2015, 99: 10355-10366.

[4]

Cheng S, Liu H, Logan BE. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem Commun, 2006, 8: 489-494.

[5]

Faria SASC, Bassinello PZ, Penteado MVC. Nutritional composition of rice bran submitted to different stabilization procedures. Braz J Pharm Sci, 2012, 48: 651-657.

[6]

Feng Y, Wang X, Logan BE, Lee H. Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol, 2008, 78: 873-880.

[7]

Inoue K, Ito T, Kawano Y, Iguchi A, Miyahara M, Suzuki Y, Watanabe K. Electricity generation from cattle manure slurry by cassette-electrode microbial fuel cells. J Biosci Bioeng, 2013, 116: 610-615.

[8]

Jiang J, Zhao Q, Zhang J, Zhang G, Lee DJ. Electricity generation from biotreatment of sewage sludge with microbial fuel cell. Bioresour Technol, 2009, 100: 5808-5812.

[9]

Krieg NR. Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB. Order I. Bacteroidales ord. nov. Bergey’s Manual of Systematic Bacteriology, 2011, 2, New York: Springer-Verlag, 25.

[10]

Kumar R, Singh L, Wahid ZA, Din MFM. Exoelectrogens in microbial fuel cells toward bioelectricity generation: a review. Int J Energy Res, 2015, 39: 1048-1067.

[11]

Liu JR, Tanner RS, Schumann P, Weiss N, McKenzie CA, Janssen PH, Seviour EM, Lawson PA, Allen TD, Seviour RJ. Emended description of the genus Trichococcus, description of Trichococcus collinsii sp. nov., and reclassification of Lactosphaera pasteurii as Trichococcus pasteurii comb. nov. and of Ruminococcus palustris as Trichococcus palustris comb. nov. in the low-G + C gram-positive bacteria. Int J Syst Evol Microbiol, 2002, 52: 1113-1126.

[12]

Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells: methodology and technology. Environ Sci Technol, 2006, 40: 5181-5192.

[13]

Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M, Butler JE, Giloteaux L, Rotaru AE, Holmes DE, Franks AE, Orellana R, Risso C, Nevin KP. Geobacter: the microbe electric’s physiology, ecology, and practical applications. Adv Microb Physiol, 2011, 59: 1-100.

[14]

Matsuoka H, Tanaka S. Enhancement antioxidant effect of the fermented rice bran and isolation of the antioxidative component. Mukai-zaidan Rep., 2013, 102402: 1-4.

[15]

Min B, Logan BE. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol, 2004, 38: 5809-5814.

[16]

Miyahara M, Hashimoto K, Watanabe K. Use of cassette-electrode microbial fuel cell for wastewater treatment. J Biosci Bioeng, 2013, 115: 176-181.

[17]

Miyahara M, Kouzuma A, Watanabe K. Sodium chloride concentration determines exoelectrogens in anode biofilms occurring from mangrove-grown brackish sediment. Bioresour Technol, 2016, 218: 674-679.

[18]

Miyahara M, Sakamoto A, Kouzuma A, Watanabe K. Poly iron sulfate flocculant as an effective additive for improving the performance of microbial fuel cells. Bioresour Technol, 2016, 221: 331-335.

[19]

Moqsud MA, Omine K, Yasufuku N, Hyodo M, Nakata Y. Microbial fuel cell (MFC) for bioelectricity generation from organic wastes. Waste Manag, 2013, 33: 2465-2469.

[20]

Schievano A, Sciarria TP, Gao YC, Scaglia B, Salati S, Zanardo M, Quiaob W, Dongb R, Adani F. Dark fermentation, anaerobic digestion and microbial fuel cells: an integrated system to valorize swine manure and rice bran. Waste Manag, 2016, 56: 519-529.

[21]

Shimoyama T, Yamazawa A, Ueno Y, Watanabe K. Phylogenetic analyses of bacterial communities developed in a cassette-electrode microbial fuel cell. Microbes Environ, 2009, 24: 188-192.

[22]

Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol, 2007, 73: 5261-5267.

[23]

Watanabe K. Recent developments in microbial fuel cell technologies for sustainable bioenergy. J Biosci Bioeng, 2008, 106: 528-536.

[24]

Wiegel J, Tanner R, Rainey FA. Dworkin MM, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. An introduction to the family Clostridiaceae. The prokaryotes, 2006, New York: Springer, 654-678.

Funding

Japan Society for the Promotion of Science(15H01753)

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/