Metabolic engineering of Serratia marcescens MG1 for enhanced production of (3R)-acetoin

Xin Lv , Lu Dai , Fangmin Bai , Zhanqing Wang , Liaoyuan Zhang , Yaling Shen

Bioresources and Bioprocessing ›› 2016, Vol. 3 ›› Issue (1) : 52

PDF
Bioresources and Bioprocessing ›› 2016, Vol. 3 ›› Issue (1) : 52 DOI: 10.1186/s40643-016-0128-2
Research

Metabolic engineering of Serratia marcescens MG1 for enhanced production of (3R)-acetoin

Author information +
History +
PDF

Abstract

Background

Optically pure acetoin (AC) is an important platform chemical which has been widely used to synthesize novel optically active α-hydroxyketone derivatives and liquid crystal composites.

Results

In this study, slaC and gldA encoding meso-2,3-butanediol dehydrogenase (meso-2,3-BDH) and glycerol dehydrogenase (GDH), respectively, in S. marcescens MG1 were knocked out to block the conversion from AC to 2,3-butanediol (2,3-BD). The resulting strain MG14 was found to produce a large amount of optically pure (3R)-AC with a little 2,3-BD, indicating that another enzyme responsible for 2,3-BD formation except meso-2,3-BDH and GDH existed in the strain MG1. Furthermore, SlaR protein, a transcriptional activator of AC cluster, was overexpressed using PC promoter in the strain MG14, leading to enhancement of the (3R)-AC yield by 29.91%. The recombinant strain with overexpression of SlaR, designated as S. marcescens MG15, was used to perform medium optimization for improving (3R)-AC production.

Conclusion

Under the optimized conditions, 39.91 ± 1.35 g/l (3R)-AC was produced by strain MG15 with the productivity of 1.11 g/l h and the conversion rate of 80.13%.

Keywords

(3R)-AC / Meso-2 / 3-Butanediol dehydrogenase / Glycerol dehydrogenase / Transcriptional regulator / SlaR / Serratia marcescens MG1

Cite this article

Download citation ▾
Xin Lv, Lu Dai, Fangmin Bai, Zhanqing Wang, Liaoyuan Zhang, Yaling Shen. Metabolic engineering of Serratia marcescens MG1 for enhanced production of (3R)-acetoin. Bioresources and Bioprocessing, 2016, 3(1): 52 DOI:10.1186/s40643-016-0128-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bai FM, Dai L, Fan JY, Truong N, Rao B, Zhang LY, Shen YL. Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol. J Ind Microbiol Biotechnol, 2015, 42(5): 779-786.

[2]

Biswas R, Yamaoka M, Nakayama H, Kondo T, Yoshida K, Bisaria VS, Kondo A. Enhanced production of 2,3-butanediol by engineered Bacillus subtilis. Appl Microbiol Biotechnol, 2012, 94(3): 651-658.

[3]

Celińska E, Grajek W. Biotechnological production of 2,3-butanediol—current state and prospects. Biotechnol Adv, 2009, 27: 715-725.

[4]

Frädrich C, March A, Fiege K, Hartmann A, Jahn D, Härtig E. The transcription factor AlsR binds and regulates the promoter of the alsSD operon responsible for acetoin formation in Bacillus subtilis. J Bacteriol, 2012, 194(5): 1100-1112.

[5]

Hao WB, Ji FL, Wang JY, Zhang Y, Wang TQ, Bao YM. Biochemical Characterization of unusual meso-2,3-butanediol dehydrogenase from a strain of Bacillus subtilis. J Mol Catal B, 2014, 109: 184-190.

[6]

Ja Sun, Zhang LY, Rao B, Han YB, Chu J, Zhu JW, Shen YL, Wei DZ. Enhanced acetoin production by Serratia marcescens H32 using statistical optimization and a two-stage agitation speed control strategy. Biotechnol Bioprocess Eng, 2012, 17(3): 598-605.

[7]

Kousoulos C, Tsatsou G, Apostolou C, Dotsikas Y, Loukas YL. Development of a high-throughput method for the determination of itraconazole and its hydroxy metabolite in human plasma, employing automated liquid-liquid extraction based on 96-well format plates and LC/MS/MS. Anal Bioanal Chem, 2006, 384(1): 199-207.

[8]

Liu YF, Zhang SL, Yong YC, Ji ZX, Ma X, Xu ZH, Chen SW. Efficient production of acetoin by the newly isolated Bacillus licheniformis strain MEL09. Process Biochem, 2011, 46(1): 390-394.

[9]

Liu Z, Qin JY, Gao C, Hua DL, Ma CQ, Li LX, Wang Y, Xu P. Production of (2S,3S)-2,3-butanediol and (3S)-acetoin from glucose using resting cells of Klebsiella pneumonia and Bacillus subtilis. Bioresour Technol, 2011, 102(22): 10741-10744.

[10]

Lorenzo VD, Herrero M, Jakubzik U. Mini-TnS transposon derivatives for insertion mutagenesis, promotor probing, and chromosomal insertion of cloned DNA in gram-negative Enbacteria. J Bacteriol, 1990, 172(11): 6568-6572.

[11]

Marion MB. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72(1): 248-254.

[12]

Rao B, Zhang LY, Sun Ja SuG, Wei DZ, Chu J, Zhu JW, Shen YL. Characterization and regulation of the 2,3-butanediol pathway in Serratia marcescens. Appl Microbiol Biotechnol, 2012, 93(5): 2147-2159.

[13]

Renna MC, Najimudin N, Winik LR, Zahler SA. Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol, 1993, 175(12): 3863-3875.

[14]

Snoep JL, Joost M, de Mattos T, Neijssel OM. Effect of the energy source on the NADH/NAD ratio and on pyruvate catabolism in anaerobic chemostat cultures of Enterococcus faecalis NCTC 775. FEMS Microbiol Lett, 1991, 81: 63-66.

[15]

Sun L, Yang F, Sun HB, Zhu TC, Li XH, Li Y, Xu ZH, Zhang YP. Synthetic pathway optimization for improved 1,2,4–butanetriol production. J Ind Microbial Biotechnol, 2015, 43(1): 67-78.

[16]

Wang DX, Zhou JD, Chen C, Wei D, Shi JP, Jiang B, Liu PF, Hao J. R-acetoin accumulation and dissimilation in Klebsiella pneumoniae. J Ind Microbiol Biotechnol, 2015, 42(8): 1105-1115.

[17]

Wayne LN. The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Appl Environ Microb, 2008, 74(22): 6832-6838.

[18]

Xiao ZJ, Lu JR. Strategies for enhancing fermentative production of acetoin: a review. Biotechnol Adv, 2014, 32(2): 492-503.

[19]

Xiao ZJ, Xu P. Acetoin metabolism in bacteria. Crit Rev Microbiol, 2007, 33(2): 127-140.

[20]

Xiao ZJ, Lv CJ, Gao C, Qin JY, Ma CQ, Liu Z, Liu PH, Li LX, Xu P. A novel whole-cell biocatalyst with NAD+ regeneration for production of chiral chemicals. PLoS ONE, 2010, 5(1): e8860.

[21]

Yang TH, Rathnasingh C, Lee HJ, Seung D. Identification of acetoin reductases involved in 2,3-butanediol pathway in Klebsiella oxytoca. J Biotechnol, 2014, 172: 59-66.

[22]

Zhang LY, Chen S, Xie HB, Tian YT, Hu KH. Efficient acetoin production by optimization of medium components and oxygen supply control using a newly isolated Paenibacillus polymyxa CS107. J Chem Technol Biotechnol, 2012, 87(11): 1551-1557.

[23]

Zhang X, Zhang RZ, Yang TW, Zhang J, Xu MJ, Li HZ, Xu ZH, Rao ZM. Mutation breeding of acetoin high producing Bacillus subtilis blocked in 2,3-butanediol dehydrogenase. World J Microb Biotechnol, 2013, 29(10): 1783-1789.

[24]

Zhang X, Zhang RZ, Bao T, Yang TW, Xu MJ, Li HZ, Xu ZH, Rao ZM. Moderate expression of the transcriptional regulator ALsR enhances acetoin production by Bacillus subtilis. J Ind Microbiol Biotechnol, 2013, 40(9): 1067-1076.

[25]

Zhang LY, Xu QM, Peng XQ, Xu BH, Wu YH, Yang YL, Sun SJ, Hu KH, Shen YL. Cloning, expression and characterization of glycerol dehydrogenase involved in 2,3-butanediol formation in Serratia marcescens H30. J Ind Microbiol Biotechnol, 2014, 41(9): 1319-1327.

[26]

Zhang LJ, Liu QY, Ge YS, Li LX, Gao C, Xu P, Ma CQ. Biotechnological production of acetoin, a biobased platform chemical, from a lignocellulosic resource by metabolically engineered Enterobacter cloacae. Green Chem, 2016, 18: 1560-1570.

Funding

Shanghai Leading Academic Discipline Project(B505)

National Special Fund for State Key Laboratory of Bioreactor Engineering(2060204)

AI Summary AI Mindmap
PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/