Combined 13C-assisted metabolomics and metabolic flux analysis reveals the impacts of glutamate on the central metabolism of high β-galactosidase-producing Pichia pastoris

Ping Liu , Mingzhi Huang , Menglei Guo , Jiangchao Qian , Weilu Lin , Ju Chu , Yingping Zhuang , Siliang Zhang

Bioresources and Bioprocessing ›› 2016, Vol. 3 ›› Issue (1) : 47

PDF
Bioresources and Bioprocessing ›› 2016, Vol. 3 ›› Issue (1) : 47 DOI: 10.1186/s40643-016-0124-6
Research

Combined 13C-assisted metabolomics and metabolic flux analysis reveals the impacts of glutamate on the central metabolism of high β-galactosidase-producing Pichia pastoris

Author information +
History +
PDF

Abstract

Background

Pichia pastoris is a popular recombinant protein expression system for its accessibility of efficient gene manipulation and high protein production. Sufficient supply of precursors, energy, and redox cofactors is crucial for high recombinant protein production. In our present work, we found that the addition of glutamate improved the recombinant β-galactosidase (β-gal) production by P. pastoris G1HL.

Methods

To elucidate the impacts of glutamate on the central metabolism in detail, a combined 13C-assisted metabolomics and 13C metabolic flux analysis was conducted based on LC–MS/MS and GC–MS data.

Results

The pool sizes of intracellular amino acids were obviously higher on glucose/glutamate (Glc/Glu). The fluxes in EMP entry reaction and in downstream TCA cycle were 50 and 67% higher on Glc/Glu than on Glc, respectively. While the fluxes in upstream TCA cycle kept almost unaltered, the fluxes in PPP oxidative branch decreased.

Conclusion

The addition of glutamate leads to a remarkable change on the central metabolism of high β-galactosidase-producing P. pastoris G1HL. To meet the increased demands of redox cofactors and energy for higher β-galactosidase production on Glc/Glu, P. pastoris G1HL redistributes the fluxes in central metabolism through the inhibitions and/or activation of the enzymes in key nodes together with the energy and redox status.

Keywords

Glutamate / 13C metabolic flux analysis / Metabolomics / P. pastoris / Recombinant protein expression

Cite this article

Download citation ▾
Ping Liu, Mingzhi Huang, Menglei Guo, Jiangchao Qian, Weilu Lin, Ju Chu, Yingping Zhuang, Siliang Zhang. Combined 13C-assisted metabolomics and metabolic flux analysis reveals the impacts of glutamate on the central metabolism of high β-galactosidase-producing Pichia pastoris. Bioresources and Bioprocessing, 2016, 3(1): 47 DOI:10.1186/s40643-016-0124-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blank LM, Lehmbeck F, Sauer U. Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res, 2005, 5: 545-558.

[2]

Canelas AB, ten Pierick A, Ras C, Seifar RM, van Dam JC, van Gulik WM, Heijnen JJ. Quantitative evaluation of intracellular metabolite extraction techniques for yeast metabolomics. Anal Chem, 2009, 81: 7379-7389.

[3]

Carnicer M, Canelas AB, Ten Pierick A, Zeng Z, van Dam J, Albiol J, Ferrer P, Heijnen JJ, van Gulik W. Development of quantitative metabolomics for Pichia pastoris. Metabolomics, 2012, 8: 284-298.

[4]

Cereghino GPL, Cereghino JL, Ilgen C, Cregg JM. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol, 2002, 13: 329-332.

[5]

Chen X, Alonso AP, Allen DK, Reed JL, Shachar-Hill Y. Synergy between 13C-metabolic flux analysis and flux balance analysis for understanding metabolic adaptation to anaerobiosis in E. coli. Metab Eng, 2011, 13: 38-48.

[6]

Chung B, Selvarasu S, Camattari A, Ryu J, Lee H, Ahn J, Lee D, Lee D-Y. Research Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement. Microb Cell Fact, 2010, 9: 50.

[7]

Cos O, Serrano A, Montesinos JL, Ferrer P, Cregg JM, Valero F. Combined effect of the methanol utilization (Mut) phenotype and gene dosage on recombinant protein production in Pichia pastoris fed-batch cultures. J Biotechnol, 2005, 116: 321-335.

[8]

Craven GR, Steers E, Anfinsen CB. Purification, composition, and molecular weight of the β-galactosidase of Escherichia coli K12. J Biol Chem, 1965, 240: 2468-2477.

[9]

Cregg JM, Vedvick TS, Raschke WC. Recent advances in the expression of foreign genes in Pichia pastoris. Nat Biotech, 1993, 11: 905-910.

[10]

Das J, Busse H-G. Mosekilde E, Mosekilde L. Analysis of the adenine nucleotide pool in an oscillating extract of yeast Saccharomyces Uvarum. Complexity, chaos, and biological evolution, 1992, US: Springer.

[11]

De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouze P, Van de Peer Y, Callewaert N. Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol, 2009, 27: 561-566.

[12]

Driouch H, Melzer G, Wittmann C. Integration of in vivo and in silico metabolic fluxes for improvement of recombinant protein production. Metab Eng, 2012, 14: 47-58.

[13]

Feng X, Zhuang W, Colletti P, Tang Y. Metabolic pathway determination and flux analysis in nonmodel microorganisms through 13C-isotope labeling. Microb Syst Biol, 2012, 881: 309-330.

[14]

Glick BR. Metabolic load and heterologous gene expression. Biotechnol Adv, 1995, 13: 247-261.

[15]

Gonzalez R, Andrews BA, Molitor J, Asenjo JA. Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122. Biotechnol Bioeng, 2003, 82: 152-169.

[16]

Görgens JF, Passoth V, van Zyl WH, Knoetze JH, Hahn-Högerdal B. Amino acid supplementation, controlled oxygen limitation and sequential double induction improves heterologous xylanase production by Pichia stipitis. FEMS Yeast Res, 2005, 5: 677-683.

[17]

Görgens JF, van Zyl WH, Knoetze JH, Hahn-Högerdal B. Amino acid supplementation improves heterologous protein production by Saccharomyces cerevisiae in defined medium. Appl Microb Biotechnol, 2005, 67: 684-691.

[18]

Gumińska M, Ważewska-Czyżewska M. Enzymatic pattern of glucose metabolic pathways in pyruvate kinase-deficient erythrocytes. Clin Chim Acta, 1975, 64: 165-172.

[19]

Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi B-K. Humanization of yeast to produce complex terminally sialylated glycoproteins. Science, 2006, 313: 1441-1443.

[20]

Heyland J, Fu J, Blank LM, Schmid A. Carbon metabolism limits recombinant protein production in Pichia pastoris. Biotechnol Bioeng, 2011, 108: 1942-1953.

[21]

Hou J, Lages NF, Oldiges M, Vemuri GN. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. Metab Eng, 2009, 11: 253-261.

[22]

Jan Heyland JF, Blank Lars M, Schmid A. Quantitative physiology of Pichia pastoris during glucose-limited high-cell density fed-batch cultivation for recombinant protein production. Biotechnol Bioeng, 2010, 107: 357-368.

[23]

Jordà J, Jouhten P, Cámara E, Maaheimo H, Albiol J, Ferrer P. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose: methanol mixtures. Microb Cell Fact, 2012, 11(10): 1186.

[24]

Jordà J, Rojas HC, Carnicer M, Wahl A, Ferrer P, Albiol J. Quantitative metabolomics and instationary 13C-metabolic flux analysis reveals impact of recombinant protein production on trehalose and energy metabolism in Pichia pastoris. Metabolites, 2014, 4: 281-299.

[25]

Klein T, Lange S, Wilhelm N, Bureik M, Yang TH, Heinzle E, Schneider K. Overcoming the metabolic burden of protein secretion in Schizosaccharomyces pombe-a quantitative approach using 13C-based metabolic flux analysis. Metab Eng, 2014, 21: 34-45.

[26]

Liu Z, Butow RA. A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function. Mol Cell Biol, 1999, 19: 6720-6728.

[27]

Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM. Heterologous protein production using the Pichia pastoris expression system. Yeast, 2005, 22: 249-270.

[28]

Mattanovich D, Gasser B, Hohenblum H, Sauer M. Stress in recombinant protein producing yeasts. J Biotechnol, 2004, 113: 121-135.

[29]

Nie Y, Huang M, Lu J, Qian J, Lin W, Chu J, Zhuang Y, Zhang S. Impacts of high β-galactosidase expression on central metabolism of recombinant Pichia pastoris GS115 using glucose as sole carbon source via 13C metabolic flux analysis. J Biotechnol, 2014, 187: 124-134.

[30]

Niu H, Jost L, Pirlot N, Sassi H, Daukandt M, Rodriguez C, Fickers P. A quantitative study of methanol/sorbitol co-feeding process of a Pichia pastoris Mut+/pAOX1-lacZ strain. Microb Cell Fact, 2013, 12: 33.

[31]

Nocon J, Steiger MG, Pfeffer M, Sohn SB, Kim TY, Maurer M, Russmayer H, Pflugl S, Ask M, Haberhauer-Troyer C, Ortmayr K, Hann S, Koellensperger G, Gasser B, Lee SY, Mattanovich D. Model based engineering of Pichia pastoris central metabolism enhances recombinant protein production. Metab Eng, 2014, 24: 129-138.

[32]

Ogawa T, Mori H, Tomita M, Yoshino M. Inhibitory effect of phosphoenolpyruvate on glycolytic enzymes in Escherichia coli. Res Microbiol, 2007, 158: 159-163.

[33]

Parekh RN, Wittrup KD. Expression level tuning for optimal heterologous protein secretion in Saccharomyces cerevisiae. Biotechnol Prog, 1997, 13: 117-122.

[34]

Procopio S, Sprung P, Becker T. Effect of amino acid supply on the transcription of flavour-related genes and aroma compound production during lager yeast fermentation. LWT Food Sci Technol, 2015, 63: 289-297.

[35]

Qin X, Qian J, Yao G, Zhuang Y, Zhang S, Chu J. GAP promoter library for fine-tuning of gene expression in Pichia pastoris. Appl Environ Microbiol, 2011, 77: 3600-3608.

[36]

Sauer M, Branduardi P, Rußmayer H, Marx H, Porro D, Mattanovich D. Piškur J, Compagno C. Production of metabolites and heterologous proteins. Molecular mechanisms in yeast carbon metabolism, 2014, Berlin: Springer.

[37]

Sonenshein AL. Control of key metabolic intersections in Bacillus subtilis. Nat Rev Microbiol, 2007, 5: 917-927.

[38]

Takama M, Nosoh Y. Effect of ATP on glucose-6-phosphate isomerase from Bacillus caldotenax. Biochim Biophys Acta, 1982, 705: 127-130.

[39]

Toya Y, Hirasawa T, Morimoto T, Masuda K, Kageyama Y, Ozaki K, Ogasawara N, Shimizu H. 13C-metabolic flux analysis in heterologous cellulase production by Bacillus subtilis genome-reduced strain. J Biotechnol, 2014, 179: 42-49.

[40]

Verduyn C. Physiology of yeasts in relation to biomass yields. Antonie Van Leeuwenhoek, 1991, 60: 325-353.

[41]

Wasylenko TM, Stephanopoulos G. Metabolomic and 13C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase. Biotechnol Bioeng, 2015, 112: 470-483.

[42]

Wittmann C. Fluxome analysis using GC-MS. Microb Cell Fact, 2007, 6: 6.

[43]

Wu L, Mashego MR, van Dam JC, Proell AM, Vinke JL, Ras C, van Winden WA, van Gulik WM, Heijnen JJ. Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Anal Biochem, 2005, 336: 164-171.

[44]

Young JD. INCA: a computational platform for isotopically non-stationary metabolic flux analysis. Bioinformatics, 2014, 30: 1333-1335.

[45]

Zamboni N, Fendt S-M, Ruhl M, Sauer U. 13C-based metabolic flux analysis. Nat Protoc, 2009, 4: 878-892.

Funding

National Basic Research Program of China(2013CB733600)

National Natural Science Foundation of China(201276081)

National Key Technology Support Program of China(2011BAF02B05)

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/