Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity

Venkatesh Chaturvedi , Pradeep Verma

Bioresources and Bioprocessing ›› 2016, Vol. 3 ›› Issue (1) : 38

PDF
Bioresources and Bioprocessing ›› 2016, Vol. 3 ›› Issue (1) : 38 DOI: 10.1186/s40643-016-0116-6
Review

Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity

Author information +
History +
PDF

Abstract

Today we are witnessing a global energy crisis due to huge energy demands and limited resources. Non-renewable energy sources are depleting and renewable energy sources are not properly utilized. There is an immediate need for search of alternate routes for energy generation. Microbial fuel cell (MFC) technology, which uses microorganisms to transform chemical energy of organic compounds into electricity is considered a promising alternative. Extensive studies have corroborated new insights into MFC, which show that a wide array of carbon sources including wastes can be employed using a variety of microbes. Consequently, microbial transformation of wastes using novel bioremediation strategies such as MFC for energy generation is considered as an efficient and environmentally benign approach. This paper deals with critical review of different classes of xenobiotics and wastes that can be employed for bioenergy generation, microorganisms involved, power output, major benefits, challenges and pit holes of MFC technology.

Keywords

Microbial fuel cell (MFC) / Electricity / Technology / Waste / Pollutant / Xenobiotic

Cite this article

Download citation ▾
Venkatesh Chaturvedi, Pradeep Verma. Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity. Bioresources and Bioprocessing, 2016, 3(1): 38 DOI:10.1186/s40643-016-0116-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol, 2006, 40: 3388-3394.

[2]

Aldrovandi A, Marsili E, Paganin P, Tabacchioni S, Giordano A. Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell. Biores Technol, 2009, 100: 3252-3260.

[3]

Allen RM, Bennetto HP. Microbial fuel-cells: electricity production from carbohydrates. Appl Biochem Biotech, 1993, 39: 27-40.

[4]

Bakhshian S, Kariminia HR, Roshandel R. Bioelectricity generation enhancement in a dual chamber microbial fuel cell under cathodic enzyme catalyzed dye decolorization. Biores Technol, 2011, 102: 6761-6765.

[5]

Banuelos GS, Lin ZQ. Phytoremediation management of selenium-laden drainage sediments in the San Luis Drain: a greenhouse feasibility study. Ecotoxicol Environ Safety, 2005, 62(3): 309-316.

[6]

Barkovskii A, Korshunova VE, Pozdnyacova LI. Catabolism of phenol and benzoate by Azospirillum strains. Appl Soil Ecol, 1995, 2(1): 17-24.

[7]

Behera M, Ghangrekar MM. Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Biores Technol, 2009, 100: 5114-5121.

[8]

Bond DR, Lovley DR. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl Environ Microbiol, 2005, 71(4): 2186-2189.

[9]

Cai J, Zheng P. Simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell. Biores Technol, 2013, 128: 760-764.

[10]

Catal T, Liu H, Bermek H. Selenium induces manganese dependent peroxidase activity by the White-Rot Fungus Bjerkandera adusta (Willdenow) P. Karsten. Biol Trace Elem Res, 2008, 123(1–3): 211-217.

[11]

Catal T, Bermek H, Liu H. Removal of selenite from wastewater using microbial fuel cells. Biotechnol Lett, 2009, 31: 1211-1216.

[12]

Chae KJ, Choi MJ, Lee JW, Kim KY, Kim IS. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Biores Technol, 2009, 100: 3518-3525.

[13]

Chaturvedi V, Verma P. Metabolism of Chicken Feathers and Concomitant Electricity Generation by Pseudomonas aeruginosa by Employing Microbial Fuel Cell (MFC). J Waste Management, 2013

[14]

Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless-microbial fuel cells. Nat Biotechnol 21(10):1229–1232

[15]

Chebotareva N, Nyokong T. Metallophthalocyanine catalysed electroreduction of nitrate and nitrite ions in alkaline media. J Appl Electrochem, 1997, 27: 975-981.

[16]

Chen YP, Lopez-de-Victoria G, Lovell CR. Utilization of aromatic compounds as carbon and energy sources during growth and N2-fixation by free-living nitrogen fixing bacteria. Arch Microbiol, 1993, 159(3): 207-212.

[17]

Chen B, Wang Y, Ng I. Understanding interactive characteristics of bioelectricity generation and reductive decolorization using Proteus hauseri. Biores Technol, 2010, 101(2): 4737-4741.

[18]

Cheng S, Liu H, Logan BE. Increased power and coulombic efficiency of single-chamber microbial fuel cells through an improved cathode structure. Electrochem Comm, 2006, 8: 489-494.

[19]

Cheng S, Liu H, Logan BE. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single-chamber microbial fuel cells. Environ Sci Technol, 2006, 40: 364-369.

[20]

Choi J, Chang HN, Han JI. Performance of microbial fuel cell with volatile fatty acids from food wastes. Biotechnol Lett, 2011, 33: 705-714.

[21]

Clauwaert P, Van Der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W. An open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol, 2007, 41: 7564-7569.

[22]

Clauwaert P, van der Ha D, Verstraete W. Energy recovery from energy rich vegetable products with microbial fuel cells. Biotechnol Lett, 2008, 30(11): 1947-1951.

[23]

Cucu A, Tiliakos A, Tanase I, Serban CE, Stamatin I, Ciocanea A, Nichita C. Microbial fuel cell for nitrate reduction. Energy Procedia, 2016, 85: 156-161.

[24]

Daniel DK, Mankidy BD, Ambarish K, Manogari R. Construction and operation of a microbial fuel cell for electricity generation from wastewater. Int J Hydrogen Energy, 2009, 34: 7555-7560.

[25]

Della Rocca C. Cotton-supported heterotrophic denitrification of nitrate-rich drinking water with a sand filtration post-treatment. Water Res Com, 2005, 31: 229-235.

[26]

Dima GE, Beltramo GL, Koper MTM. Nitrate reduction on single-crystal platinum electrodes. Electrochim Acta, 2005, 50: 4318-4326.

[27]

Dos Santos AB, Cervantes FJ, Van Lier JB. Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Biores Technol, 2007, 98(12): 2369-2385.

[28]

Fan Y, Hu H, Liu H. Enhanced columbic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources, 2007, 171: 348-354.

[29]

Fang C, Min B, Angelidaki I. Nitrate as an oxidant in the cathode chamber of a microbial fuel cell for both power generation and nutrient removal purposes. Appl Biochem Biotechnol, 2011, 164: 464-474.

[30]

Fang Z, Song H, Cang N, Li X. Electricity production from azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions. Biosens Bioelectron, 2015, 68: 135-141.

[31]

Feng YJ, Wang X, Logan BE, Lee H. Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol, 2008, 78: 873-880.

[32]

Fernando E, Keshavarz T, Kyazze G. Enhanced bio-decolourisation of acid orange 7 by Shewanella oneidensis through co-metabolism in a microbial fuel cell. Int Biodeterior Biodegrad, 2012, 72: 1-9.

[33]

Fournier D, Trott S, Hawari J, Spain J. Metabolism of the aliphatic nitramine 4-nitro-2,4-diazabutanal by Methylobacterium sp. strain JS178. Appl Environ Microbiol, 2005, 71(8): 4199-4202.

[34]

Fujita M, Ike M, Kashiwa M, Hashimoto R, Soda S. Laboratory-scale continuous reactor for soluble selenium removal using selenate-reducing bacterium, Bacillus sp. SF-1. Biotechnol Bioeng, 2002, 80(7): 755-761.

[35]

Gangadharan P, Nambi IM. Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell. Water Sci Technol, 2015, 71(3): 353-358.

[36]

Gil GC, Chang IS, Kim BH, Kim M, Jang JK, Park HS, Kim HJ (2003) Operationalparameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron 18(4):327–334

[37]

Greenman J, Gálvez A, Giusti L, Ieropoulos I. Electricity from landfill leachate using microbial fuel cells: comparison with a biological aerated filter. Enzyme Microb Technol, 2009, 44: 112-119.

[38]

Ha PT, Tae B, Chang IS. Performance and bacterial consortium of microbial fuel cell fed with formate. Energy Fuels, 2008, 22: 164-168.

[39]

Hamilton SF. Review of selenium toxicity in aquatic food chains. Sci Total Environ, 2004, 326(1–3): 1-31.

[40]

He Z, Angenent LT. Application of bacterial biocathodes in microbial fuel cells. Electroanalysis, 2006, 18: 2009-2015.

[41]

He Z, Minteer SD, Angenent LT. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol, 2005, 39: 5262-5267.

[42]

Heilmann J, Logan B. Production of electricity from proteins using a microbial fuel cell. Water Environ Res, 2006, 78(5): 531-537.

[43]

Holmes DE, Bond DR, Lovley DR. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl Environ Microbiol, 2004, 70(2): 1234.

[44]

Holmes DE, Bond DR, O’Neil RA, Reimers CE, Tender LR, Lovley DR. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol, 2004, 48: 178-190.

[45]

Humphries AC, Nott KP, Hall LD, Macaskie LE. Continuous removal of Cr(VI) from aqueous solution catalyzed by palladised biomass of Desulfovibrio vulgaris. Biotechnol Lett, 2004, 26: 1529-1532.

[46]

Ichihashi O, Hirooka K. Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell. Biores Technol, 2012, 114: 303-307.

[47]

Jadhav GS, Ghangrekar MM. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Biores Technol, 2009, 100: 717-723.

[48]

Jia YH, Tran HT, Kim DH, Oh SJ, Park DH, Zhang RH, Ahn DH. Simultaneous organics removal and bio-electrochemical denitrification in microbial fuel cells. Bioproc Biosyst Eng, 2008, 31: 315-321.

[49]

Kaewkannetra P, Imai T, Garcia-Garcia FJ, Chiu TY. Cyanide removal from cassava mill wastewater using Azotobactor vinelandii TISTR 1094 with mixed microorganisms in activated sludge treatment system. J Hazard Mater, 2009, 172: 224-228.

[50]

Kashiwa M, Nishimoto S, Takahashi K, Ike M, Fujita M. Factors affecting soluble selenium removal by a selenate reducing bacterium Bacillus sp. SF-1. J Biosci Bioeng, 2000, 89(6): 528-533.

[51]

Katuri KP, Enright AM, O’Flaherty V, Leech D. Microbial analysis of anodic biofilm in a microbial fuel cell using slaughter house wastewater. Bioelectrochemistry, 2012

[52]

Khan M, Abdulateif H, Ismail IM, Sabir S, Khan MZ. Bioelectricity generation and bioremediation of an azo-dye in a microbial fuel cell coupled activated sludge process. PLoS ONE, 2015, 10(10): e0138448.

[53]

Kim N, Choi Y, Jung S, Kim S. Development of microbial fuel cells using Proteus vulgaris. Bull Korean Chem Soc, 2000, 21(1): 44-48.

[54]

Kim N, Choi Y, Jung S, Kim S. Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnol Bioeng, 2000, 70(1): 109-114.

[55]

Kim JR, Jung SH, Regan JM, Logan B. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Biores Technol, 2007, 98: 2568-2577.

[56]

Kondaveeti S, Min B. Nitrate reduction with biotic and abiotic cathodes at various cell voltages in bioelectrochemical denitrification system. Bioprocess Biosyst Eng, 2012

[57]

Kurniawan TA, Chan GYS, Lo WH, Babel S. Comparisons of low cost adsorbents for treating wastewaters laden with heavy metals. Sci Total Environ, 2006, 366: 409-426.

[58]

Lemly AD. Ecosystem recovery following selenium contamination in a freshwater reservoir. Ecotoxicol Environ Saf, 1997, 36(3): 275-281.

[59]

Li H, Ni J (2011) Treatment of wastewater from Dioscorea zingiberensis tubers used for producing steroid hormones in a microbial fuel cell. Bioresour Technol 102(3):2731–2735

[60]

Li X, Hu B, Suib S, Lei Y, Li B. Manganese dioxide as a new cathode catalyst in microbial fuel cells. J Power Sources, 2010, 195: 2586-2591.

[61]

Liu H, Logan BE. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol, 2004, 38: 4040-4046.

[62]

Liu H, Ramnarayanan R, Logan BE. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol, 2004, 38(7): 2281-2285.

[63]

Liu ZD, Lian J, Du ZW, Li HR. Construction of sugar-based microbial fuel cells by dissimilatory metal reduction bacteria. Chin J Biotech, 2006, 22: 131-137.

[64]

Liu H, Cheng S, Huang L, Logan BE. Scale-up of membrane free single-chamber microbial fuel cells. J Power Sources, 2008, 179: 274-279.

[65]

Liu L, Li F, Feng C, Li X. Microbial fuel cell with an azo-dye-feeding cathode. Appl Microbiol Biotechnol, 2009, 85: 175-183.

[66]

Liu Z, Liu J, Zhang S, Su Z. Study of operational performance and electrical response on mediator-less microbial fuel cells fed with carbon- and protein-rich substrates. Biochem Eng J, 2009, 45: 185-191.

[67]

Logan BE. Biologically extracting energy from wastewater: biohydrogen production and microbial fuel cells. Environ Sci Technol, 2004, 38: 160-167.

[68]

Logan BE, Regan JM. Electricity-producing bacterial communities in microbial fuel cells. Trends Biotechnol, 2006, 14(12): 512-518.

[69]

Logan BE, Regan JM. Microbial fuel cells: challenges and applications. Environ Sci Technol, 2006, 40: 5172-5180.

[70]

Lovley DR. Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environ Microbiol Rep, 2011, 3: 27-35.

[71]

Lu N, Zhou SG, Zhuang L, Zhang JT, Ni JR. Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem Eng J, 2009, 43: 246-251.

[72]

Luo H, Liu G, Jin S. Phenol degradation in microbial fuel cells. Chem Eng J, 2009, 147: 259-264.

[73]

Luo Y, Liu G, Zhang R, Zhang C. Power generation from furfural using the microbial fuel cell. J Power Sources, 2010, 195: 190-194.

[74]

Manohar AK, Mansfeld F. The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions. Electrochem Acta, 2009, 54: 1664-1670.

[75]

Menek N, Karaman Y. Polarographic and voltammetric investigation of 8-hydroxy-7-(4-sulfo-1-naphthylazo)-5-quinoline sulfonic acid. Dyes Pigm, 2005, 67: 9-14.

[76]

Menicucci J, Beyenal H, Marsili E, Veluchamy RA, Demir G, Lewandowski Z. Procedure for determining maximum sustainable power generated by microbial fuel cells. Environ Sci Technol, 2006, 40: 1062-1068.

[77]

Min B, Logan BE. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol, 2004, 38(21): 5809-5814.

[78]

Min B, Kim JR, Oh SE, Regan J, Logan B. Electricity generation from swine wastewater using microbial fuel cells. Water Res, 2005, 39: 4961-4968.

[79]

Mohanakrishna G, Mohan SV, Sarma PN. Utilizing acid-rich effluents of fermentative hydrogen production process as substrate for harnessing bioelectricity: an integrative approach. Int J Hydrogen Energy, 2010, 35: 3440-3449.

[80]

Molokwane PE, Meli KC, Nkhalambayausi-Chirw EM. Chromium (VI) reduction in activated sludge bacteria exposed to high chromium loading: brits culture (South Africa). Water Res, 2008, 42: 4538-4548.

[81]

Niessen J, Schröder U, Harnisch F, Scholz F. Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation. Lett Appl Microbiol, 2005, 41: 286-290.

[82]

Niessen J, Harnisch F, Rosenabaum M, Schröder U, Scholz F. Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation. Electrochem Commun, 2006, 8: 869-873.

[83]

Oh S, Logan B. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res, 2005, 39: 4673-4682.

[84]

Pandey A, Singh P, Iyengar L. Bacterial decolorization and degradation of azo dyes. Int Biodeterior Biodegrad, 2007, 59(2): 73-84.

[85]

Park J, Yoo Y. Biological nitrate removal in industrial wastewater treatment: which electron donor we can choose. Appl Microbiol Biotechnol, 2009, 82: 415-429.

[86]

Park HI, Kim DK, Choi YJ, Park D. Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor. Proc Biochem, 2005, 40: 3383-3388.

[87]

Parot S, Delia ML, Bergel A. Acetate to enhance electrochemical activity of biofilms from garden compost. Electrochim Acta, 2008, 53: 2737-2742.

[88]

Patil SA, Surakasi VP, Koul S, Ijmulwar S, Vivek A, Shouche YS, Kapadnis BP. Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Biores Technol, 2009, 100: 5132-5139.

[89]

Peters D, Ngai DD (2000) An DT agro-processing wastewater assessment in periurban Hanoi. CIP program report: 451–457

[90]

Pham TH, Boon N, Maeyer KD, Höfte M, Rabaey K, Verstraete W. Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation. Appl Microbiol Biotechnol, 2008, 80: 985-993.

[91]

Pham H, Boon N, Marzorati M, Verstraete W. Enhanced removal of 1,2-dichloroethane by anodophilic microbial consortia. Water Res, 2009, 43: 2936-2946.

[92]

Polatides C, Kyriacou G. Electrochemical reduction of nitrate ion on various cathodes—reaction kinetics on bronze cathode. J Appl Electrochem, 2005, 35: 421-427.

[93]

Potter MC. Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Lond B, 1911, 84: 260-276.

[94]

Prasertsung N, Reungsang A, Ratanatamskul C. Alkalinity of cassava wastewater ffed in anodic enhance electricity generation by a single chamber microbial fuel cells. Engr J, 2012, 16(5): 17-28.

[95]

Quezada BC, Delia ML, Bergel A. Testing various food-industry wastes for electricity production in microbial fuel cell. Biores Technol, 2010, 101: 2748-2754.

[96]

Rabaey K, Verstrate W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol, 2005, 23: 291-298.

[97]

Rabaey K, Lissens G, Siciliano SD, Verstraete W. A microbial biofuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett, 2003, 25: 1531-1535.

[98]

Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol, 2004, 70(9): 5373-5382.

[99]

Rabaey K, Clauwaert P, Aelterman P, Verstraete W. Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol, 2005, 39(20): 8077-8082.

[100]

Rabaey K, Ossieur W, Verhaege M, Verstraete W. Continuous microbial fuel cells convert carbohydrates to electricity. Water Sci Technol, 2005, 52(1–2): 515-523.

[101]

Rabaey K, Van de Somperl K, Magnien L, Boon N, Aelterman P, Caluwaert P, De Schamphelaire L, Pham H, Vermeulen J, Verhaege M, Lens P, Verstraete W. Microbial fuel cells for sulfide removal. Environ Sci Technol, 2006, 40(17): 5218-5224.

[102]

Ren Z, Steinberg LM, Regan JM. Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells. W Sci Technol, 2008, 58: 617-622.

[103]

Rezaei F, Richard TL, Brennan RA, Logan BE. Substrate-enhanced microbial fuel cells for improved remote power generation from sediment based systems. Environ Sci Technol, 2007, 41: 4053-4058.

[104]

Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE. Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol, 2009, 75(11): 3673-3678.

[105]

Riedel GF, Ferrier DP, Sanders JG. Uptake of selenium by freshwater phytoplankton. Water Air Soil Pollut, 1991, 57–58(1): 23-30.

[106]

Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, . High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol, 2006, 40: 2629-2634.

[107]

Rismani-Yazidi H, Christy AD, Dehority BA, Morrison M, Yu Z, Tuovinen OH. Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol Bioeng, 2007, 97(6): 1398-1407.

[108]

Rismani-Yazdi H, Carver SM, Christy AD, Tuovinen OH. Cathode limitations in microbial fuel cells: an overview. J Power Sources, 2008, 180: 683-694.

[109]

Roldán MD, Blasco R, Caballero FJ, Castillo F. Degradation of pnitrophenol by the phototrophic bacterium Rhodobacter capsulatus. Arch Microbiol, 1998, 169(1): 36-42.

[110]

Rovira M, Gime´nez J, Martı´nez M, . Sorption of selenium (IV) and selenium (VI) onto natural iron oxides: goethite and hematite. J Hazard Mater, 2008, 150(2): 279-284.

[111]

Schröder U, Nieβen J, Scholz F. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew Chem Int Ed, 2003, 42: 2880-2883.

[112]

Scott K, Murano C. Microbial fuel cells utilizing carbohydrates. J Chem Technol Biotechnol, 2007, 82: 92-100.

[113]

Sedky H, Hassan A, Kim YS, Oh S. Power generation from cellulose using mixed and pure cultures of cellulose-degrading bacteria in a microbial fuel cell. Enz Microb Technol, 2012, 51(5): 269-273.

[114]

Song Z, Zhou J, Wang J, Yan B, Du C. Decolorization of azo dyes by Rhodobacter sphaeroides. Biotechnol Lett, 2003, 25(21): 1815-1818.

[115]

Stams AJM, De Bok FAM, Plugge CM, Van Eekert MHA, Dolfing J, Schraa G. Exocellular electron-transfer in anaerobic microbial communities. Environ Microbiol, 2006, 8: 371-382.

[116]

Sun J, Hu YY, Bi Z, Cao YQ. Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single chamber microbial fuel cell. Biores Technol, 2009, 100: 3185-3192.

[117]

Sun J, Bi Z, Hou B, Cao Y, Hu Y. Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode. Water Res, 2011, 45: 283-291.

[118]

Sun J, Hu YY, Hou B. Electrochemical characteriztion of the bioanode during simultaneous azo dye decolorization and bioelectricity generation in an air–cathode single chambered microbial fuel cell. Electrochim Acta, 2011, 56(19): 6874-6879.

[119]

Tandukar M, Huber SJ, Onodera T, Pavlostathis SG. Biological chromium(VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol, 2009, 43: 8159-8165.

[120]

Ter Heijne A, Hamelers HVM, Buisman CJN. Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte. Environ Sci Technol, 2007, 41: 4130-4134.

[121]

Till BA, Weathers LJ, Alvarez PJJ. Fe(0)-supported autotrophic denitrification. Environ Sci Technol, 1998, 32: 634-639.

[122]

Torres CI, Brown RK, Parameswaran P, Marcus AK, Wanger G, Gorby YA, Rittmann BE. Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization. Environ Sci Technol, 2009, 43: 9519-9524.

[123]

Venkata Mohan S, Saravanan R, Veer Raghuvulu S, Mohanakrishna G, Sarma PN. Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: effect of catholyte. Bioresour Technol, 2008, 99: 596-603.

[124]

Vet SJ, Rutgers R. From waste to energy: first experimental Bacterial Fuel Cells onboard the International Space Station. Bremen Microgravity Sci Technol XIX, 2007, 5(6): 225-229.

[125]

Virdis B, Rabaey K, Yuan ZG, Keller J. Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res, 2008, 42: 3013-3024.

[126]

Wang G, Huang LP, Zhang YF. Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotechnol Lett, 2008, 30: 1959-1966.

[127]

Wang X, Feng Y, Ren N, Wang H, Lee H, Li N, Zhao Q. Accelerated start-up of two-chambered microbial fuel cells: effect of positive poised potential. Electrochem Acta, 2009, 54: 1109-1114.

[128]

Wang Z, Lee T, Lim B, Choi C, Park J. Microbial community structures differentiated in a single-chamber air-cathode microbial fuel cell fueled with rice straw hydrolysate. Biotechnol Biofuels, 2014, 7: 9.

[129]

Wen Q, Wu Y, Cao D, Zhao L, Sun Q. Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater. Biores Technol, 2009, 100: 4171-4175.

[130]

Wen Q, Wu Y, Zhao L, Sun Q, Kon F. Electricity generation and brewery wastewater treatment from sequential anode-cathode microbial fuel cell. J Zhejiang Univ Sci B, 2010, 11(2): 87-93.

[131]

Xafenias N, Zhang Y, Banks CJ. Evaluating hexavalent chromium reduction and electricity production in microbial fuel cells with alkaline cathodes. Int J Env Sci Technol, 2015, 12(8): 2435-2446.

[132]

Xu MY, Guo J, Sun GP. Biodegradation of textile azo dye by Shewanella decolorationis S12 under microaerophilic conditions. Appl Microbiol Biotechnol, 2007, 76: 719-726.

[133]

You S, Zhao Q, Zhang J, Jiang J, Zhao S. A microbial fuel cell using permanganate as the cathodic electron-acceptor. J Power Sources, 2006, 162: 1409-1415.

[134]

You SJ, Ren NQ, Zhao QL, Wang JY, Yang FL. Power generation and electrochemical analysis of biocathode microbial fuel cell using graphite fibre brush as cathode material. Fuel Cells, 2009, 5: 588-596.

[135]

Zang GL, Sheng GP, Tong ZH, Liu XW, Teng SX, Li WW. Direct electricity recovery from Canna indica by an air-cathode microbial fuel cell inoculated with rumen microorganisms. Env Sci Tech, 2010, 44: 2715-2720.

[136]

Zhang B, Liu Y, Tong S, Zheng M, Zhao Y, Tian C, Liu H, Feng C. Enhancement of bacterial denitrification for nitrate removal in groundwater with electrical stimulation from microbial fuel cells. J Power Sources, 2014, 268: 423-429.

[137]

Zheng X, Nirmalakhandan N. Cattle wastes as substrates for bioelectricity production via microbial fuel cells. Biotechnol Lett, 2010, 32: 1809-1814.

[138]

Zuo Y, Maness P, Logan B. Electricity production from steam-exploded corn stover biomass. Energ Fuel, 2006, 20: 1716-1721.

[139]

Zuo Y, Cheng S, Call D, Logan BE. Tubular membrane cathodes for scalable power generation in microbial fuel cells. Environ Sci Technol, 2007, 41: 3347-3353.

Funding

Department of Biotechnology , Ministry of Science and Technology(BT/304/NE/ TBP/2012)

AI Summary AI Mindmap
PDF

191

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/