Enhancing total fatty acids and arachidonic acid production by the red microalgae Porphyridium purpureum

Gaomin Su , Kailin Jiao , Jingyu Chang , Zheng Li , Xiaoyi Guo , Yong Sun , Xianhai Zeng , Yinghua Lu , Lu Lin

Bioresources and Bioprocessing ›› 2016, Vol. 3 ›› Issue (1) : 33

PDF
Bioresources and Bioprocessing ›› 2016, Vol. 3 ›› Issue (1) : 33 DOI: 10.1186/s40643-016-0110-z
Research

Enhancing total fatty acids and arachidonic acid production by the red microalgae Porphyridium purpureum

Author information +
History +
PDF

Abstract

Objectives

This study investigated the effect of aeration rate and light intensity on biomass production and total fatty acids (TFA) accumulation by Porphyridium purpureum. The red microalgae is also known to accumulate considerable amount of arachidonic acid (ARA).

Results

In artificial seawater medium, the highest yield of TFA (473.44 mg/L) was obtained with the aeration rate of 3 L/min and light intensity of 165 µmol/m2s, whilst the highest yield of ARA (115.47 mg/L) was achieved with the aeration rate of 3 L/min and light intensity of 110 µmol/m2s. It was found that higher aeration rate led to more biomass and TFA/ARA production. However, higher light intensity could contribute to biomass accumulation, but it was adverse for TFA and ARA biosynthesis.

Conclusion

By optimizing two operating factors (i.e., light intensity and aeration rate), TFA and ARA production by P. purpureum was significantly improved. This research provides a potential alternative means for producing ARA.

Keywords

Microalgae / Porphyridium purpureum / Aeration rate / Light intensity / Total fatty acids / Arachidonic acid

Cite this article

Download citation ▾
Gaomin Su, Kailin Jiao, Jingyu Chang, Zheng Li, Xiaoyi Guo, Yong Sun, Xianhai Zeng, Yinghua Lu, Lu Lin. Enhancing total fatty acids and arachidonic acid production by the red microalgae Porphyridium purpureum. Bioresources and Bioprocessing, 2016, 3(1): 33 DOI:10.1186/s40643-016-0110-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahern TJ, Katoh S, Sada E. Arachidonic acid production by the red algae Porphyridium cruentum. Biotechnol Bioeng, 1983, 25(4): 1057-1070.

[2]

Akimoto M, Shirai A, Ohtaguchi K, Koide K. Carbon dioxide fixation and polyunsaturated fatty acid production by the red algae Porphyridium cruentum. Appl Biochem Biotechnol, 1998, 73(2–3): 269-278.

[3]

Barclay W, Meager K, Abril J. Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol, 1994, 6(2): 123-129.

[4]

Bennett PR, Rose MP, Myatt L, Elder MG. Preterm labor: stimulation of arachidonic acid metabolism in human amnion cells by bacterial products. Am J Obstetrics Gynecology, 1987, 156(3): 649-655.

[5]

Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol, 1959, 37(8): 911-917.

[6]

Cohen Z, Vonshak A, Richmond A. Effect of environmental conditions on fatty acid composition of the red algae Porphyridium cruentum: correlation to growth rate. J Phycol, 1988, 24(3): 328-332.

[7]

Constantopoulos G, Bloch K. Effect of light intensity on the lipid composition of Euglena gracilis. J Biol Chem, 1967, 242(15): 3538-3542.

[8]

De Bravo M, De Antueno R, Toledo J, De Tomas M, Mercuri O, Quintans C. Effects of an eicosapentaenoic and docosahexaenoic acid concentrate on a human lung carcinoma grown in nude mice. Lipids, 1991, 26(11): 866-870.

[9]

Dyerberg J. Linolenate-derived Polyunsaturated Fatty Acids and Prevention of Atherosclerosis. Nutr Rev, 1986, 44(4): 125-134.

[10]

Ernest G, Pringsheim O (1949) The growth requirements of Porphyridium cruentum: with remarks on the ecology of brackish water algae. J Ecol: 57–64

[11]

Fuentes MR, Fernández GA, Pérez JS, Guerrero JG. Biomass nutrient profiles of the microalgae Porphyridium cruentum. Food Chem, 2000, 70(3): 345-353.

[12]

Ginzberg A, Cohen M, Sod-Moriah UA, Shany S, Rosenshtrauch A, Arad SM. Chickens fed with biomass of the red microalgae Porphyridium sp. have reduced blood cholesterol level and modified fatty acid composition in egg yolk. J Appl Phycol, 2000, 12(3–5): 325-330.

[13]

Hartman L, Lago R. Rapid preparation of fatty acid methyl esters from lipids. Lab Pract, 1973, 22(6): 475.

[14]

Harwood J, Russell N. Lipids in Plants and Microbes, 1984, London: Allen and Unwin

[15]

Higashiyama K, Fujikawa S, Park EY, Shimizu S. Production of arachidonic acid by Mortierella fungi. Biotechnol Bioprocess Eng, 2002, 7(5): 252-262.

[16]

Huo J-Z, Nelis HJ, Lavens P, Sorgeloos P, De Leenheer A. Determination of E vitamers in microalgae using high-performance liquid chromatography with fluorescence detection. J Chromatogr A, 1997, 782(1): 63-68.

[17]

Jiang L, Luo S, Fan X, Yang Z, Guo R. Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl Energy, 2011, 88(10): 3336-3341.

[18]

Jones RF, Speer HL, Kury W. Studies on the growth of the red algae Porphyridium cruentum. Physiol Plant, 1963, 16(3): 636-643.

[19]

Koch W. Untersuchungen an bakterienfreien Masenkulturen der einzelligen Rotalge Porphyridium cruentum Naegeli. Archiv für Mikrobiologie, 1952, 18(1–4): 232-241.

[20]

Koletzko B, Braun M. Arachidonic acid and early human growth: is there a relation?. Ann Nutr Metab, 1991, 35(3): 128-131.

[21]

Kromhout D, Bosschieter EB, Coulander CdL. The inverse relation between fish consumption and 20-year mortality from coronary heart disease. N Engl J Med, 1985, 312(19): 1205-1209.

[22]

Liqin S, Changhai W, Lei S Effects of light regime on extracellular polysaccharide production by Porphyridium cruentum cultured in flat plate photobioreactors. In: Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. The 2nd International Conference on, 2008. IEEE, pp 1488–1491

[23]

Mendoza H, Martel A, Del Río MJ, Reina GG. Oleic acid is the main fatty acid related with carotenogenesis in Dunaliella salina. J Appl Phycol, 1999, 11(1): 15-19.

[24]

Merchuk J, Ronen M, Giris S, Arad SM. Light/dark cycles in the growth of the red microalgae Porphyridium sp. Biotechnol Bioeng, 1998, 59(6): 705-713.

[25]

Muradyan E, Klyachko-Gurvich G, Tsoglin L, Sergeyenko T, Pronina N. Changes in lipid metabolism during adaptation of the Dunaliella salina photosynthetic apparatus to high CO2 concentration. Russian J Plant Physiol, 2004, 51(1): 53-62.

[26]

Nichols B, Appleby R. The distribution and biosynthesis of arachidonic acid in algae. Phytochem, 1969, 8(10): 1907-1915.

[27]

Oh SH, Han JG, Kim Y, Ha JH, Kim SS, Jeong MH, Jeong HS, Kim NY, Cho JS, Yoon WB. Lipid production in Porphyridium cruentum grown under different culture conditions. J Biosci Bioeng, 2009, 108(5): 429-434.

[28]

Rosenberg A, Pecker M. Lipid Alterations in Euglena gracilis Cells During Light-induced Greening*. Biochem, 1964, 3(2): 254-258.

[29]

Shinmen Y, Shimizu S, Akimoto K, Kawashima H, Yamada H. Production of arachidonic acid by Mortierella fungi. Appl Microbiol Biotechnol, 1989, 31(1): 11-16.

[30]

Sukenik A (1999) Production of eicosapentaenoic acid by the marine eustigmatophyte Nannochloropsis. Chemicals from microalgae: 41–56

[31]

Tang D, Han W, Li P, Miao X, Zhong J. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol, 2011, 102(3): 3071-3076.

[32]

Thompson GA. Lipids and membrane function in green algae. Biochim Biophys Acta, 1996, 1302(1): 17-45.

[33]

Velea S, Ilie L, Filipescu L. Optimization of Porphyridium purpureum culture growth using two variables experimental design: light and sodium bicarbonate. UPB Sci Bull Series B, 2011, 73(4): 81-94.

Funding

Special Fund for Fujian Ocean High-Tech Industry Development (No. 2013015)

Research Program from the Science and Technology Bureau of Xiamen City in China(3502Z20131016)

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/