Sequence similarity network analysis, crystallization, and X-ray crystallographic analysis of the lactate metabolism regulator LldR from Pseudomonas aeruginosa

Bo Xin , Geng Wu , Kunzhi Zhang , Yongxing He , Hongzhi Tang , Chao Gao , Ping Xu , Cuiqing Ma

Bioresources and Bioprocessing ›› 2016, Vol. 3 ›› Issue (1) : 32

PDF
Bioresources and Bioprocessing ›› 2016, Vol. 3 ›› Issue (1) : 32 DOI: 10.1186/s40643-016-0109-5
Research

Sequence similarity network analysis, crystallization, and X-ray crystallographic analysis of the lactate metabolism regulator LldR from Pseudomonas aeruginosa

Author information +
History +
PDF

Abstract

Background

The FadR subfamily of regulators plays essential roles in the regulation of diverse metabolic pathways in bacteria. LldR, an FadR-type regulator, regulates lactate utilization in Pseudomonas aeruginosa.

Results

Sequence network analysis of the LldR proteins from different bacterial species showed that LldR proteins from Pseudomonas sp. and Escherichia coli were separated into different clusters, suggesting that LldRs are derived from two ancestors that functionally diverged. Then, the recombinant PLldR protein (LldR of P. aeruginosa) was expressed, purified, and crystallized. Preliminary X-ray diffraction analysis of LldR protein crystals was performed. The PLldR crystal diffracted to 2.55 Å resolution and belonged to the trigonal space group P3, with unit-cell parameters a = 68.5 Å, b = 68.5 Å, and c = 237.0 Å.

Conclusion

These results will facilitate further understanding of the regulatory mechanism and the adaptation to sensing of both l -lactate and d -lactate of LldR proteins from Pseudomonas sp. in lactate metabolism.

Keywords

LldR / Sequence similarity network / Regulatory mechanism / Pseudomonas aeruginosa / Crystallization

Cite this article

Download citation ▾
Bo Xin, Geng Wu, Kunzhi Zhang, Yongxing He, Hongzhi Tang, Chao Gao, Ping Xu, Cuiqing Ma. Sequence similarity network analysis, crystallization, and X-ray crystallographic analysis of the lactate metabolism regulator LldR from Pseudomonas aeruginosa. Bioresources and Bioprocessing, 2016, 3(1): 32 DOI:10.1186/s40643-016-0109-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Atkinson HJ, Morris JH, Ferrin TE, Babbitt PC. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PLoS One, 2009, 4(2): e4345.

[2]

Bramucci E, Paiardini A, Bossa F, Pascarella S. PyMod: sequence similarity searches, multiple sequence-structure alignments, and homology modeling within PyMOL. BMC Bioinform, 2012, 13(Suppl 4): S2.

[3]

Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B, Hanspers K, Isserlin R, Kelley R, Killcoyne S, Lotia S, Maere S, Morris J, Ono K, Pavlovic V, Pico AR, Vailaya A, Wang PL, Adler A, Conklin BR, Hood L, Kuiper M, Sander C, Schmulevich I, Schwikowski B, Warner GJ, Ideker T, Bader GD. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc, 2007, 2(10): 2366-2382.

[4]

Futai M. Membrane d-lactate dehydrogenase from Escherichia coli. Purification and properties. Biochemistry, 1973, 12(13): 2468-2474.

[5]

Futai M, Kimura H. Inducible membrane-bound l-lactate dehydrogenase from Escherichia coli. J Biol Chem, 1977, 252(16): 5820-5827.

[6]

Gao YG, Suzuki H, Itou H, Zhou Y, Tanaka Y, Wachi M, Watanabe N, Tanaka I, Yao M. Structural and functional characterization of the LldR from Corynebacterium glutamicum: a transcriptional repressor involved in l-lactate and sugar utilization. Nucleic Acids Res, 2008, 36(22): 7110-7123.

[7]

Gao C, Hu C, Zheng Z, Ma C, Jiang T, Dou P, Zhang W, Che B, Wang Y, Lv M, Xu P. Lactate utilization is regulated by the FadR-type regulator LldR in Pseudomonas aeruginosa. J Bacteriol, 2012, 194(10): 2687-2692.

[8]

Gao C, Hu C, Ma C, Su F, Yu H, Jiang T, Dou P, Wang Y, Qin T, Lv M, Xu P. Genome sequence of the lactate-utilizing Pseudomonas aeruginosa strain XMG. J Bacteriol, 2012, 194(17): 4751-4752.

[9]

Haydon DJ, Guest JR. A new family of bacterial regulatory proteins. FEMS Microbiol Lett, 1991, 63(2–3): 291-295.

[10]

Matthews BW. Solvent content of protein crystals. J Mol Biol, 1968, 33(2): 491-497.

[11]

McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics, 2000, 16(4): 404-405. Oxford, England)

[12]

Ogasawara H, Ishida Y, Yamada K, Yamamoto K, Ishihama A. PdhR (pyruvate dehydrogenase complex regulator) controls the respiratory electron transport system in Escherichia coli. J Bacteriol, 2007, 189(15): 5534-5541.

[13]

Otwinowski Z, Minor W. Processing of X-ray diffraction data. Methods Enzymol, 1997, 276: 307-326.

[14]

Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res, 2007, 35: D61-D65. Database issue)

[15]

Rigali S, Derouaux A, Giannotta F, Dusart J. Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J Biol Chem, 2002, 277(15): 12507-12515.

[16]

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25(24): 4876-4882.

[17]

Wittkop T, Emig D, Lange S, Rahmann S, Albrecht M, Morris JH, Bocker S, Stoye J, Baumbach J. Partitioning biological data with transitivity clustering. Nat Methods, 2010, 7(6): 419-420.

[18]

Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 2008, 9: 40.

Funding

National Natural Science Foundation of China(31270090)

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/