Production of bioethanol by bacterial co-culture from agro-waste-impacted soil through simultaneous saccharification and co-fermentation of steam-exploded bagasse

Francis Sopuruchukwu Ire , Victor Ezebuiro , Chimezie Jason Ogugbue

Bioresources and Bioprocessing ›› 2016, Vol. 3 ›› Issue (1) : 26

PDF
Bioresources and Bioprocessing ›› 2016, Vol. 3 ›› Issue (1) : 26 DOI: 10.1186/s40643-016-0104-x
Research

Production of bioethanol by bacterial co-culture from agro-waste-impacted soil through simultaneous saccharification and co-fermentation of steam-exploded bagasse

Author information +
History +
PDF

Abstract

Background

The production of bioethanol by co-culture of cellulolytic and xylanolytic bacteria isolated from agro-waste-impacted soil through simultaneous saccharification and co-fermentation (SSCF) of steam-exploded bagasse was investigated.

Methods

The cellulolytic (VCE-19) and xylanolytic (VXE-41) isolates were screened using the Congo Red Plate Method. The DNS method was used in the determination of reducing sugar content. Chemical analysis of the sugarcane bagasse was determined using standard methods. The bagasse was subjected to steam explosion to reduce lignin content and enhance cellulose availability.

Results

Mean proximate composition analysis of the bagasse showed total carbohydrate and lignin content (% dry weight) of 70.3 ± 1.9 and 19.2 ± 1.2 before pretreatment and 85.4 ± 2.33 and 4.2 ± 0.44 after pretreatment, respectively. Phylogenetic analysis based on partial sequence of the 16S rRNA gene classified VCE-19 and VXE-41 as Bacillus cereus GBPS9 and Bacillus thuringiensis serovar kurstaki HD1, respectively. The sequences obtained from these isolates have been submitted to GenBank and accession numbers (KT350986.1 for VXE-41 and KT318371.1 for VCE-19) assigned to them. The result of the optimization of cultural conditions of the bacterial co-culture revealed optimum cellulase production at the following conditions: temperature, 40 °C; pH, 7; substrate concentration, 4.0 % (w/v); inoculum concentration, 4 % (v/v) and when yeast extract was used as nitrogen source. The gas chromatography–mass spectrometry (GC–MS) analysis of the fermentation broth detected the following components: acetone (3.49 g/L), ethylacetate (8.75 g/L), ethanol (19.08 g/L), N-propanol (4.96 g/L), isobutanol (3.73 g/L) and acetic acid (6.53 g/L).

Conclusions

This study has demonstrated the production of significant quantity of ethanol by a co-culture of B. cereus GBPS9 and B. thuringiensis serovar kurstaki HD1 through SSCF of steam-exploded bagasse. Efficient bioethanol production from bagasse can help solve the need for alternative source of energy and the crisis that results from bioethanol production from food and feed crops.

Keywords

Co-culture / Bioethanol / Bagasse / Simultaneous saccharification and co-fermentation (SSCF) / Bacillus cereus / Bacillus thuringiensis

Cite this article

Download citation ▾
Francis Sopuruchukwu Ire, Victor Ezebuiro, Chimezie Jason Ogugbue. Production of bioethanol by bacterial co-culture from agro-waste-impacted soil through simultaneous saccharification and co-fermentation of steam-exploded bagasse. Bioresources and Bioprocessing, 2016, 3(1): 26 DOI:10.1186/s40643-016-0104-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abou-Taleb AAK, Mashhoor WA, Nasr AS, Sharaf MS, Abdel-Azeem HMH. Nutritional and environmental factors affecting cellulase production by two strains of cellulolytic Bacilli. Aust J Basic Appl Sci, 2009, 3: 2429-2436.

[2]

Acharya PB, Acharya DK, Modi HA. Optimization for cellulase production by Aspergillus niger using saw dust as substrate. Afr J Biotechnol, 2008, 7(22): 4147-4152.

[3]

Agustini L, Efiyanti L, Krith Sarah AF, Santoso E. Isolation and characterization of cellulase- and xylanase-producing microbes isolated from tropical forests in Java and Sumatra. Int J Environ Bioenerg, 2012, 3(3): 154-167.

[4]

Amores I, Ballesteros I, Manzanares P, Sáez P, Michelena G, Ballesteros M. Ethanol production from sugarcane bagasse pretreated by steam explosion. Electron J Energ Environ, 2013, 1(1): 25-36.

[5]

Apun K, Jong BC, Salleh MA. Screening and isolation of a cellulolytic and amylolytic Bacillus from sago pith waste. J Gen Appl Microbiol, 2000, 46(5): 263-267.

[6]

Ashfaque M, Solomon S, Pathak N. Optimization of pretreatment and fermentation conditions for production of extracellular cellulase complex using sugarcane bagasse. Bioinformation, 2014, 10(10): 606-610.

[7]

Bailey MJ, Biely P, Poutanen K. Inter-laboratory testing of methods for assay of xylanase activity. J Biotechnol, 1992, 23: 257-270.

[8]

Balat M, Balat H, Oz C. Progress in bioethanol processing. Energy Comb Sci, 2008, 34: 551-573.

[9]

Ballesteros I, Negro MJ, Oliva JM, Cabañas A, Manzanares P, . Ethanol production from steam-explosion pretreated wheat straw. Appl Biochem Biotechnol, 2006, 129–132: 496-508.

[10]

Banerjee S, Mudliar S, Sen R, Giri B, Satpute D, Chakrabarti T. Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels Bioprod Biorefin, 2010, 4: 77-93.

[11]

Behera BC, Parida S, Dutta SK, Thatoi HN. Isolation and identification of cellulose degrading bacteria from mangrove soil of Mahanadi River Delta and their cellulase production ability. Am J Microbiol Res, 2014, 2: 41-46.

[12]

Canilha L, Carvalho W, Felipe MGA, Almeida JB, Giulietti ME. Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis. Appl Biochem Biotechnol, 2010, 161: 84-92.

[13]

Coughlan MP, Hazlewood GP. β-1, 4-D-Xylan-degrading enzyme systems, biochemistry, molecular biology and applications. Biotechnol Appl Biochem, 1997, 17: 259-289.

[14]

da Silva R, Lago ES, Merheb CW, Macchione MM, Park Y, Gomes E. Production of xylanase and CMCase on solid state fermentation in different residues by Thermococcus aurantiacus miehe. Braz J Microbiol, 2005, 36(3): 235-241.

[15]

Das P, Ganesha A, Wangikar P. Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products. Biomass Bioenerg, 2004, 27: 445-457.

[16]

El-Tayeb TS, Abdelhafez AA, Ali SH, Ramadan EM. Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production. Braz J Microbiol, 2012, 43: 523-1535.

[17]

Ezebuiro V, Ogugbue CJ, Oruwari B, Ire FS. Bioethanol production by an ethanol-tolerant Bacillus cereus strain GBPS9 using sugarcane bagasse and cassava peels as feedstocks. J Biotechnol Biomater, 2015, 5: 213.

[18]

Fagade OE, Bamigboye OO. Effect of cultural conditions on the cellulase activity of bacteria species isolated from degrading corn cob. Arch Appl Sci Res, 2012, 4(6): 2540-2545.

[19]

Fan LT, Lee YH, Beard DH. Mechanism of the enzymatic hydrolysis of cellulose: effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnol Bioeng, 1980, 22: 177-179.

[20]

Ferreira-Leitão V, Perrone CC, Rodrigues J, Franke APM, Macrelli S, . An approach to the utilisation of CO2 as impregnating agent in steam pretreatment of sugar cane bagasse and leaves for ethanol production. Biotechnol Biofuels, 2010, 3: 1-8.

[21]

Gastón C, Bambanaste R, Correa JL, Alfonso G, Herryman M (2000) Instituto Cubano de Investigaciones de los Derivados de la Caña de Azúcar. Manual de los Derivados de la Caña de Azúcar. 3ra. Ed. La Habana, pp 31–43

[22]

Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, . Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 2007, 315: 804-807.

[23]

Holt JG, Krieg NR, Sneath PHA. Bergey’s manual of determinative bacteriology, 1994, USA: Lippincott Williams and Wilkins.

[24]

Ingale S, Joshi JS, Gupte A. Production of bioethanol using agricultural waste: banana pseudo stem. Braz J Microbiol, 2014, 45: 885-892.

[25]

Joshi B, Bhatt MR, Sharma D, Joshi J, Malla R. Lignocellulosic ethanol production: current practices and recent developments. Biotechnol Mol Biol Rev, 2011, 6: 172-182.

[26]

Khasin A, Alchanati I, Shoham Y. Purification and characterization of thermostable xylanase from Bacillus stearothermophilus T-6. Appl Environ Microbiol, 1993, 59: 1725-1730.

[27]

Ladeira SA, Cruz E, Delatorre AB, Barbosa JB, Martins MLL. Cellulase production by thermophilic Bacillus sp. SMIA-2 and its detergent compatibility. Electron J Biotechn, 2015, 18: 110-115.

[28]

Lin YH, Knipping EM, Edgerton ES, Shaw SL, Surratt JD. Investigating the influences of SO2 and NH3 levels on isoprene-derived secondary organic aerosol formation using conditional sampling approaches. Atmos Chem Phys, 2013, 13: 8457-8470.

[29]

Liu J, Yang J. Cellulase production by Trichoderma koningii A83.4262 in solid state fermentation using lignocellulosic waste from the vinegar industry. Food Technol Biotech, 2007, 45(4): 420-425.

[30]

Madigan MT, Martinko JM, Stahl DA, Clark DP. Brock biology of microorganisms, 2012, USA: Benjamin Cummings California.

[31]

Martín C, Galbe M, Nilvebrant NO, Jonsson LJ. Comparison of the fermentability of enzymatic hydrolysates of sugarcane bagasse pretreated by wet oxidation and steam explosion. J Chem Technol Biotechnol, 2002, 81: 1669-1677.

[32]

Milne TA, Chum HL, Agblevor FA, Johnson DK. Standardized analytical methods. Biom Bioenerg, 1992, 2: 341-366.

[33]

Mosier N, Wyman C, Dale B, Elander R, Lee YY, . Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol, 2005, 96: 673-686.

[34]

National Sugar Development Council, NSDC. Information brochure towards self-sufficiency in Sugar, Abuja, 2003, Kansas: NSDC Publication, 1-26.

[35]

Ojumu TV, Solomon BO, Betiku S, Layokun K, Amigun B. Cellulase production by Aspergillus flavus linn isolate NSPR 101 fermented in sawdust, bagasse and corn cob. Afr J Biotechnol, 2003, 2(6): 150-152.

[36]

Olanbiwoninu AA, Odunfa SA. Enhancing the production of reducing sugars from cassava peels by pre-treatment methods. Int J Sci Technol, 2012, 2: 650-657.

[37]

Ray AK, Bairagi A, Ghosh KS, Sen SK. Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut. Acta Ichthyol Piscat, 2007, 37: 47-53.

[38]

Regina M, Broetto FF, Giovannozzi-Sermanni R, Marabatini R, Peranni CC. Influence of stationary and bioreactor cultivation on Lentinula edodes (bark) Pegler lignocellulolytic activity. Braz Arch Biol Technol, 2008, 51(2): 223-233.

[39]

Rezende CA, de Lima MA, Maziero P, Garcia DRE, Polikarpov I. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels, 2011, 4: 54.

[40]

Sarkar N, Ghosh SK, Bannerjee S, Aikat K. Bioethanol production from agricultural wastes: an overview. Renew Energ, 2012, 37: 19-27.

[41]

Sato K, Tomita M, Yonemura S, Goto S, Sekine K, . Characterization of and ethanol hyper-production by Clostridium thermocellum I-1-B. Biosci Biotech Biochem, 1993, 57: 2116-2121.

[42]

Sequeira CAC, Brito PSD, Mota AF, Carvalho JL, Rodrigues LF, . Fermentation gasification and pyrolysis of carbonaceous residues towards usage in fuel cells. Energ Convers Manage, 2007, 48: 2203-2220.

[43]

Seyis I, Aksoz N. Determination of some physiological factors affecting xylanase production from Trichoderma harzianum 1073-d3. New Microbiol, 2003, 26(1): 75-81.

[44]

Sharma N, Kalra KL, Oberoi HS, Bansal S. Optimization of fermentation parameters for production of ethanol from kinnow waste and banana peels by simultaneous saccharification and fermentation. Indian J Microbiol, 2007, 47: 310-316.

[45]

Simões MLG, Tauk-Tornisielo MS, Tapia DMT. Screening of culture condition for xylanase production by filamentous fungi. Afr J Biotechnol, 2009, 8(22): 6317-6326.

[46]

Singhania RR, Sukumaran RK, Pandey A. Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization. Appl Biochem Biotechnol, 2007, 142(1): 60-70.

[47]

Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, et al. (2008) Determination of ash in biomass. Technical report NREL/TP–510-42622. National Renewable Energy Laboratory, Golden, Colorado

[48]

Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J et al. (2011) Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP–510-42618. National Renewable Energy Laboratory, Golden, Colorado

[49]

Subramaniyan S, Prema P. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol, 2002, 22: 33-64.

[50]

Sun FB, Cheng HZ. Evaluation of enzymatic hydrolysis of wheat straw pretreated by atmospheric glycerol autocatalysis. J Chem Tech Biotechnol, 2007, 82: 1039-1044.

[51]

Svetlitchnyi V, Kensch O, Falkenhan AD, Korseska GS, Lippert N, . Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria. Biotechnol Biofuels, 2013, 6: 31.

[52]

Taherzadeh MJ, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci, 2008, 9: 1621-1651.

[53]

Talebnia F, Karakashev D, Angelidaki I. Production of bioethanol from wheat straw: an overview on pre-treatment, hydrolysis and fermentation. Bioresour Technol, 2010, 101(13): 4744-4753.

[54]

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol, 2013, 30: 2725-2729.

[55]

Willey JM, Sherwood LM, Woolverton CJ. Prescott, Harley and Kleins Microbiology, 2008, 7, Boston: McGraw Hill Co., Inc..

[56]

Xu J, Takakuwa N, Nogawa M, Okada H, Morikawa Y. A third xylanase from Trichoderma reesei PC. Appl Microbiol Biotechnol, 1998, 49: 718-724.

[57]

Yan H, Dai I, Zhang Y, Yan L, Liu D. Purification and characterization of an endo-1, 4-β-glucanase from Bacillus cereus. Afr J Biotechnol, 2011, 10: 16277-16285.

[58]

Yang B, Wyma CE. Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuel Bioprod Biorefin, 2008, 2: 26.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/