Characterization of a novel metallocarboxypeptidase from Streptomyces cinnamoneus TH-2

Kun Wan , Misugi Uraji , Jiro Arima , Tadashi Hatanaka

Bioresources and Bioprocessing ›› 2016, Vol. 3 ›› Issue (1) : 21

PDF
Bioresources and Bioprocessing ›› 2016, Vol. 3 ›› Issue (1) : 21 DOI: 10.1186/s40643-016-0099-3
Research

Characterization of a novel metallocarboxypeptidase from Streptomyces cinnamoneus TH-2

Author information +
History +
PDF

Abstract

Background

Carboxypeptidases are exopeptidases that catalyze the release of amino acids from the C-terminus of peptides or proteins. The peptides consisting of hydrophobic amino acids taste bitter. Therefore, the hydrolytic capability of carboxypeptidase toward hydrophobic amino acids at the C-terminus of peptides is useful for the degradation of bitter peptides.

Results

Using the genome data of Streptomyces cinnamoneus TH-2, we expressed and characterized a novel metallocarboxypeptidase (TH2-CP) in Streptomyces lividans. TH2-CP had a molecular mass of 37.7 kDa. As TH2-CP possesses a zinc-binding consensus motif (HXXE……H) and N-terminal prosegment residues, we suggest that TH2-CP could be classified into the M14A subfamily. In the presence of Z-Gly-Leu as the substrate, TH2-CP showed optimum activity at pHs 7 and 8 in potassium phosphate and Tris–HCl buffers, respectively. The optimum temperature for activity was 51 °C. Furthermore, 50 % activity was conserved after incubation at 38 °C for 30 min. TH2-CP showed broad substrate specificity, with a preference for hydrophobic amino acids, as demonstrated by casein hydrolysate breakdown.

Conclusions

A novel metallocarboxypeptidase, TH2-CP, from S. cinnamoneus TH-2 was characterized. TH2-CP preferred substrates with hydrophobic amino acids at the C-terminal position for casein peptides. This property indicates that TH2-CP can be used to decrease the bitterness of peptides in food industries.

Keywords

Casein / Metallocarboxypeptidase / Streptomyces

Cite this article

Download citation ▾
Kun Wan, Misugi Uraji, Jiro Arima, Tadashi Hatanaka. Characterization of a novel metallocarboxypeptidase from Streptomyces cinnamoneus TH-2. Bioresources and Bioprocessing, 2016, 3(1): 21 DOI:10.1186/s40643-016-0099-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arima J, Iwabuchi M, Hatanaka T. Gene cloning and overproduction of an aminopeptidase from Streptomyces septatus TH-2, and comparison with a calcium-activated enzyme from Streptomyces griseus. Biochem Biophys Res Commun, 2004, 317: 531-538.

[2]

Arima J, Uesugi Y, Iwabuchi M, Hatanaka T. Study on peptide hydrolysis by aminopeptidases from Streptomyces griseus, Streptomyces septatus and Aeromonas proteolytica. Appl Microbiol Biotechnol, 2006, 70: 541-547.

[3]

Arolas JL, Vendrell J, Aviles FX, Fricker LD. Metallocarboxypeptidases: emerging drug targets in biomedicine. Curr Pharm Des, 2007, 13: 349-366.

[4]

Bumberger E, Belitz HD. Bitter taste of enzymic hydrolysates of casein. Z Lebensm Unters Forsch, 1993, 197: 14-19.

[5]

Clegg KM, Lim CL, Manson W. The structure of a bitter peptide derived from casein by digestion with papain. J Dairy Res, 1974, 41: 283-287.

[6]

Fahrney DE, Gold AM. Sulfonyl fluorides as inhibitors of esterases. I. Rates of reaction with acetylcholinesterase, α-chymotrypsin, and trypsin. J Am Chem Soc, 1963, 85: 997-1000.

[7]

Fu J, Li L, Yang XQ. Specificity of carboxypeptidases from Actinomucor elegans and their debittering effect on soybean protein hydrolysates. Appl Biochem Biotechnol, 2011, 165: 1201-1210.

[8]

Ge SJ, Zhang LX. The immobilized porcine pancreatic exopeptidases and its application in casein hydrolysates debittering. Appl Biochem Biotechnol, 1996, 59: 159-165.

[9]

Hatanaka T, Negishi T, Kubota-Akizawa M, Hagishita T. Purification, characterization, cloning and sequencing of phospholipase D from Streptomyces septatus TH-2. Enzyme Microb Technol, 2002, 31: 233-241.

[10]

Hatanaka T, Arima J, Uesugi Y, Iwabuchi M. Purification, characterization, cloning and sequencing of metalloendopeptidase from Streptomyces septatus TH-2. Arch Biochem Biophys, 2005, 434: 289-298.

[11]

Hatanaka T, Onaka H, Arima J, Uraji M, Uesugi Y, Usuki H, Nishimoto Y, Iwabuchi M. pTONA5: a hyperexpression vector in Streptomycetes. Protein Expr Purif, 2008, 62: 244-248.

[12]

Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward H, Schrempf CJ. A laboratory manual, 1985, Norwich: The John Ines Foundation, 70-84.

[13]

Ichishima E. Purification and characterization of a new type of acid carboxypeptidase from Aspergillus. Biochim Biophys Acta, 1972, 258: 274-288.

[14]

Ishibashi N, Arita Y, Kanehisa H, Kouge K, Okai H, Fukui S. Bitterness of leucine-containing peptides. Agric Biol Chem, 1987, 51: 2389-2394.

[15]

Ishibashi N, Sadamori K, Yamamoto O, Kanehisa H, Kouge K, Kikuchi E, Okai H, Fukui S. Bitterness of phenylalanine- and tyrosine-containing peptides. Agric Biol Chem, 1987, 51: 3309-3313.

[16]

Kanehisa H, Miyake I, Okai H, Aoyagi H, Izumiya N. Studies of bitter peptides from casein hydrolyzate. X.1) synthesis and bitter taste of H-Arg-Gly-Pro-Phe-Pro-Ile-Ile-Val-OH Corresponding to C-terminal Portion of β-casein2). Bull Chem Soc Jpn, 1984, 57: 819-822.

[17]

Komai T, Kawabata C, Tojo H, Gocho S, Ichishima E. Purification of serine carboxypeptidase from the hepatopancreas of Japanese common squid Todarodes pacificus and its application for elimination of bitterness from bitter peptides. Fisheries Sci, 2007, 73: 404-411.

[18]

Larsen KS, Auld DS. Carboxypeptidase A: mechanism of zinc inhibition. Biochemistry, 1989, 28: 9620-9625.

[19]

Lee SH, Taguchi H, Yoshimura E, Minagawa E, Kaminogawa S, Ohta T, Matsuzawa H. The active site of carboxypeptidase Taq possesses the active site motif His-Glu-X-X-His of zinc-dependent endopeptidases and aminopeptidases. Protein Eng, 1996, 9: 467-469.

[20]

Liu F, Tachibana S, Taira T, Ishihara M, Kato F, Yasuda M. Purification and characterization of a high molecular mass serine carboxypeptidase from Monascus pilosus. J Ind Microbiol Biotechnol, 2004, 31: 572-580.

[21]

Liu F, Tachibana S, Taira T, Ishihara M, Yasuda M. Purification and characterization of a new type of serine carboxypeptidase from Monascus pilosus. J Ind Microbiol Biotechnol, 2004, 31: 23-28.

[22]

Matoba T, Hata T. Relationship between bitterness of peptides and their chemical structures. Agric Biol Chem, 1972, 37: 1423-1431.

[23]

Matoba T, Hayashi R, Hata I. Isolation of bitter peptides from trypsin hydrolysate of casein and their chemical structure. Agric Biol Chem, 1970, 34: 1235-1243.

[24]

Otagiri K, Shigenaga T, Kanehisa H, Okai H. Studies of bitter peptides from casein hydrolysate. IV.1) relationship between bitterness and hydrophobic amino acids moiety in the C-terminal of BPIa (Arg-Gly-Pro-Pro-Phe-Ile-Val)2). Bull Chem Soc Japan, 1984, 57: 90-96.

[25]

Shinoda I, Nosho Y, Otagiri K, Okai H, Fukui S. Bitterness of diastereomers of a hexapeptide (Arg-Arg-Pro-Pro-Phe-Phe) containing d-phenylalanine in place of l-phenylalanine. Agric Biol Chem, 1986, 50: 1785-1790.

[26]

Umetsu H, Matsuoka H, Ichishima E. Debittering mechanism of bitter peptides from milk casein by wheat carboxypeptidase. J Agric Food Chem, 1983, 31: 50-53.

[27]

Vendrell J, Querol E, Avilés FX. Metallocarboxypeptidases and their protein inhibitors structure, function and biomedical properties. Biochim Biophys Acta, 2000, 1477: 284-298.

[28]

Yokoyama S, Oobayashi A, Tanabe O, Sugawara S, Araki E. Production and some properties of a new type of acid carboxypeptidase of Penicillium molds. Appl Microbiol, 1974, 27: 953-960.

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/