Development and evaluation of a functional bioreactor for CO fermentation into ethanol
Poritosh Roy , Animesh Dutta , Sheng Chang
Bioresources and Bioprocessing ›› 2016, Vol. 3 ›› Issue (1) : 4
Development and evaluation of a functional bioreactor for CO fermentation into ethanol
In a conventional syngas fermentation process, gas was released into the fermentation broth through a single orifice or multiple orifices, except the hollow fiber membrane reactor. Consequently, a simplified bioreactor has been developed employing an innovative gas supply and effluent extraction systems.
A continuous stirred tank bioreactor (CSTBR) has been developed by incorporating an innovative gas supply and effluent extraction system to ferment syngas into ethanol. The working volume of the bioreactor was controlled to 2 L. The CO gas was fermented in the developed bioreactor by using a microorganism (Clostridium ljungdahlii) with different gas (5–15 mL/min), media, and effluent flow rates (0.25–0.75 mL/min) and stirrer speed (300–500 rpm). Gas was diffused into the fermenting broth through an aqueous aeration tube commonly used in the small household aquarium, placed at the bottom layer throughout the periphery. The effluent was extracted from the top layer of the broth by using a membrane separator. Ethanol and acetic acid concentrations were varied from 0.17–1.17 and 8.50–23.68 g/L-effluent, respectively.
It seems that the performance of CSTBR can be enhanced with an innovative gas supply system, which may reduce the gas bubble size and result in higher lateral velocity at the releasing point, especially, throughout the periphery instead of the center of the reactor through a single or multiple orifice.
Bioreactor / Continuous stirred tank / Microorganism / CO / Fermentation / Ethanol
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
Devarapalli M, Atiyeh HK, Phillips JR, Orgill JJ, Lewis RS, Huhnke, RL (2013) Comparison of syngas fermentation reactors for biological alcohol production. http://sungrant.tennessee.edu/NR/rdonlyres/DDF120E1-C312-4065-B095-6EC87BD11DA8/3731/Atiyeh_Hasan.pdf (accessed on 30 May 2014) |
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
Lee PH (2010) Syngas fermentation to ethanol using innovative hollow fiber membrane. Graduate Theses and Dissertations, Paper 12377, Iowa State University, USA |
| [22] |
Liu K, Atiyeh HK, Stevenson BS, Tanner RS, Wilkins MR, Huhnke RL (2014) Continuous syngas fermentation for the production of ethanol, n-propanol and n-butanol. Bioresour Technol 151:69–77 |
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
van Kasteren JMN, Dizdarevic D, van der Waall WR, Guo J, Verberne R (2005) Bio-ethanol from Syngas. Eindhoven University of Technology (TU/e), I. &. E, Ed |
/
| 〈 |
|
〉 |