Preparation of ursodeoxycholic acid from 7-ketone lithocholic acid by stereoselective electroreduction

Xiaomei Huang, Xuejun Cao

Bioresources and Bioprocessing ›› 2015, Vol. 2 ›› Issue (1) : 27.

Bioresources and Bioprocessing All Journals
Bioresources and Bioprocessing ›› 2015, Vol. 2 ›› Issue (1) : 27. DOI: 10.1186/s40643-015-0058-4
Research

Preparation of ursodeoxycholic acid from 7-ketone lithocholic acid by stereoselective electroreduction

Author information +
History +

Abstract

Background

Ursodeoxycholic acid (UDCA) is an important clinical drug in the treatment of liver disease. In previous work, ursodeoxycholic acid was prepared by traditional organic synthesis. The preparation of ursodeoxycholic acid through an electrochemical method with higher stereoselectivity and environmental friendliness is described herein.

Results

Dimethyl sulfoxide (DMSO), dimethylformamide (DMF), and N-methyl-2-pyrrolidone (NMP) were used as stereoselectivity additives during electroreduction. With 107.5 mM DMSO in methanol containing potassium bromide and a continuous current of 20 mA, 936 Coulombs was passed into the electrolysis system, achieving 88.5 % conversion of 7-ketone lithocholic acid (7K-LCA), while the yield of UDCA reached 72.8 %. Cyclic voltammetry (CV) was used to explore the electrochemical behavior of the reaction, and the electrolysis results were consistent with the cyclic voltammograms.

Conclusions

Ursodeoxycholic acid can be prepared by electroreduction with high stereoselectivity. The method developed here offers a potential application for large-scale production of ursodeoxycholic acid and an interesting reference to asymmetric electrochemical reduction of the keto group.

Keywords

7-Ketolithocholic acid / Ursodeoxycholic acid / Stereoselective / Electroreduction

Cite this article

Download citation ▾
Xiaomei Huang, Xuejun Cao. Preparation of ursodeoxycholic acid from 7-ketone lithocholic acid by stereoselective electroreduction. Bioresources and Bioprocessing, 2015, 2(1): 27 https://doi.org/10.1186/s40643-015-0058-4

References

[1.]
Shoda M. Über die ursodesoxycholsäure aus bärengallen und ihre physiologische wirkung. J Biochem, 1927, 7(3): 505-517.
[2.]
Talwalkar JA, Lindor KD. Primary biliary cirrhosis. Lancet, 2003, 362(9377): 53-61.
CrossRef Google scholar
[3.]
European Association for the Study of the Liver. EASL clinical practice guidelines: management of cholestatic liver diseases. J Hepatol, 2009, 51(2): 237-267.
CrossRef Google scholar
[4.]
Salvioli G, Igimi H, Carey MC. Cholesterol gallstone dissolution in bile. Dissolution kinetics of crystalline cholesterol monohydrate by conjugated chenodeoxycholate-lecithin and conjugated ursodeoxycholate-lecithin mixtures: dissimilar phase equilibria and dissolution mechanisms. J Lipid Res, 1983, 24: 701-720.
[5.]
Shiraki K, Ito T, Sugimoto K, . Different effects of bile acids, ursodeoxycholic acid and deoxycholic acid, on cell growth and cell death in human colonic adenocarcinoma cells. Int J Mol Med, 2005, 16(4): 729-733.
[6.]
Liu F, Cheng Y, Wu J, . Ursodeoxycholic acid differentially affects three types of sphingomyelinase in human colon cancer Caco 2 cells. Cancer Lett, 2006, 235(1): 141-146.
CrossRef Google scholar
[7.]
Galsky J, Bansky G, Holubova T, . Effect of ursodeoxycholic acid in acute viral hepatitis. J Clin Gastroenterol, 1999, 28(3): 249-253.
CrossRef Google scholar
[8.]
Poupon RE, Lindor KD, Cauch DK, . Combined analysis of randomized controlled trials of ursodeoxycholic acid in primary biliary cirrhosis. Gastroenterol, 1997, 113(3): 884-890.
CrossRef Google scholar
[9.]
Santos VN, Lanzoni VP, Szejnfeld J, . A randomized double-blind study of the short-time treatment of obese patients with nonalcoholic fatty liver disease with ursodeoxycholic acid. Braz J Med Biol Res, 2003, 36(6): 723-729.
CrossRef Google scholar
[10.]
Kanazawa T, Shimazaki A, Sato T, . Syntheses of ursodeoxycholic acid and its conjugated bile acid. Proc. Jpn. Acad, 1954, 30(5): 391-392.
[11.]
Bharucha KR, Slemon CE. Process for the electrochemical reduction of 7-ketolithocholic acid to ursodeoxycholic acid, 1985 US 4547271
[12.]
Magni A, Piccolo O, Ascheri A. Stereoselective reduction of the keto group at 7-position of a bile keto acid, 1987 EP 0230085
[13.]
Hattori M, Mikami K, Sekine T. Selective reduction of bile acid having keto group at 7-site, 1993 JP 5032692
[14.]
Liu L, Braun M, Gebhardt G, Weuster-Botz D, Gross R, Schmid R. One-step synthesis of 12-ketoursodeoxycholic acid from dehydrocholic acid using a multienzymatic system. Appl Microbiol Biotechnol, 2013, 97: 633-639.
CrossRef Google scholar
[15.]
Zheng MM, Wang RF, Li CX, Xu JH. Two-step enzymatic synthesis of ursodeoxycholic acid with a new 7β-hydroxysteroid dehydrogenase from Ruminococcus torques. Process Biochem, 2015, 50: 598-604.
CrossRef Google scholar
[16.]
Seebach D, Oei HA. Mechanism of electrochemical pinacolization. The first asymmetric synthesis in a chiral medium. Angew Chem internat Edit, 1975, 14(9): 634-636.
CrossRef Google scholar
[17.]
Horner L, Degner D. Studien zum vorgang der wasserstoffübertragung-33. Zur kenntnis des aufbaus der elektrochemischen doppelschicht. Die asymmetrische elektrochemische reduktion einiger alkyl-phenyl-ketone in gegenwart optisch aktiver leitsalze. Electrochim Acta, 1974, 19(10): 611-627.
CrossRef Google scholar
[18.]
Horner L, Brich W. Studien zum vorgang der wasserstoffübertragung, 49: zur frage der auslösung einer optischen induktion durch anwendung optisch aktiver ephedrinderivate und optisch aktiver kronenether als leitsalze bei der elektroreduktion von acetophenon. Chem Ber, 1978, 111(2): 574-578.
CrossRef Google scholar
[19.]
Schuster C, Knollmueller M, Gaertner P. Chiral linker. Part 4: diastereoselective addition of RZnX to α-keto esters using m-hydrobenzoin derived chiral auxiliaries in solution and on solid support and their application in the stereo-selective synthesis of frontalin. Tetrahedron: Asymmetry, 2006, 17(16): 2430-2441.
CrossRef Google scholar
[20.]
Chen BL, Xiao Y, Xu XM, Yang HP, Wang H, Lu JX. Alkaloid induced enantioselective electroreduction of acetophenone. Electrochim Acta, 2013, 107: 320-326.
CrossRef Google scholar
[21.]
Yadav AK, Manju M, Chhinpa PR. Enantioselective cathodic reduction of some prochiral ketones in the presence of (−)-N, N’-dimethylquininium tetrafluoroborate at mercury cathode. Tetrahedron: Asymmetry, 2003, 14(8): 1079-1081.
CrossRef Google scholar
[22.]
Vago M, Williams FJ, Calvo EJ. Enantioselective electrocatalytic hydrogenation of ethyl pyruvate on carbon supported Pd electrodes. Electrochem Commun, 2007, 9: 2725-2728.
CrossRef Google scholar
[23.]
Vasudevan D, Kennady CJ. Electroreduction of carbonyl compounds at a Ti/ceramic TiO2 cathode. J Appl Electrochem, 2008, 38: 403-408.
CrossRef Google scholar
[24.]
Tascedda P, Dunach E. Electrosynthesis of cyclic carbamates from aziridines and carbon dioxide. Chem Commun, 2000, 6: 449-450.
CrossRef Google scholar
[25.]
Batanero B, Saez R, Barba F. Electroreduction of quinones under aprotic conditions. Electrochim Acta, 2009, 54: 4872-4879.
CrossRef Google scholar
[26.]
Zhao HB, Tian H, Jin YH, Cao XJ. Synthesis of 7-ketolithocholic acid via indirect electrooxidation of chenodeoxycholic acid. J Appl Electrochem, 2010, 40(7): 1307-1316.
CrossRef Google scholar
[27.]
Ma XL, Cao XJ. Separation of ursodeoxycholic acid by silylation crystallization. Bioresources and Bioprocessing, 2014, 1: 5.
CrossRef Google scholar
[28.]
Hecht M, Fawcett W. Solvent effects in the electroreduction of [diamine-N, N'-polycarboxylato] chromate (III) complexes at a mercury electrode. J Electroanal Chem, 1995, 396: 473-483.
CrossRef Google scholar
[29.]
Fawcett W. The role of the metal and the solvent in simple heterogeneous electron transfer reactions. Electrochim Acta, 1997, 42(5): 833-839.
CrossRef Google scholar
[30.]
Yuan XX, Ma XL, Cao XJ. Preparation of ursodeoxycholic acid by direct electro-reduction of 7-ketolithocholic acid. Korean J Chem Eng, 2014, 31(7): 1276-1280.
CrossRef Google scholar

22

Accesses

2

Citations

3

Altmetric

Detail

Sections
Recommended

/