Bacterial chitinase: nature and perspectives for sustainable bioproduction

Qiang Yan , Stephen S Fong

Bioresources and Bioprocessing ›› 2015, Vol. 2 ›› Issue (1) : 31

PDF
Bioresources and Bioprocessing ›› 2015, Vol. 2 ›› Issue (1) : 31 DOI: 10.1186/s40643-015-0057-5
Review

Bacterial chitinase: nature and perspectives for sustainable bioproduction

Author information +
History +
PDF

Abstract

Concurrent advances in a number of fields have fostered the development of bioprocesses for biochemical production. Ideally, future bioprocesses will meet the demands of commercial chemical markets in an economical fashion while being sustainable through the use of renewable starting materials. A number of different renewable and abundant biopolymers (e.g., cellulose, hemicelluloses, lignin, and chitin) are potential starting material for sustainable bioprocesses, but a broad challenge remains on how to efficiently depolymerize these biopolymers to generate monomeric sugars that can be metabolized by industrial microorganisms or other useful building block chemicals. Indeed, a variety of specialty chemicals may be able to be generated from these various monomers. This review focuses on the biopolymer chitin and discusses research and knowledge relevant to chitin degradation and potential chemical products that can be made from chitin degradation products.

Keywords

Chitin / Chitinase / Biopolymer / Bioprocessing / Renewable / Sustainability

Cite this article

Download citation ▾
Qiang Yan, Stephen S Fong. Bacterial chitinase: nature and perspectives for sustainable bioproduction. Bioresources and Bioprocessing, 2015, 2(1): 31 DOI:10.1186/s40643-015-0057-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hasunuma T, Okazaki F, Okai N, Hara KY, Ishii J, Kondo A. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour Technol, 2013, 135: 513-522.

[2]

Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtlzapple M, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol, 2005, 96: 673-686.

[3]

Eijsink VGH, Vaaje-Kolstad G, Vårum KM, Horn SJ. Towards new enzymes for biofuels: lessons from chitinase research. Trends Biotechnol, 2008, 26: 228-235.

[4]

Rinaudo M. Chitin and chitosan: properties and applications. Prog in Polym Sci, 2006, 31: 603-632.

[5]

Harti L, Zach S, Seidl-Seiboth V. Fungal chitinase: diversity, mechanistic properties and biotechnological potential. Appl Microbiol and Biotechnol, 2012, 93: 533-543.

[6]

Aam BB, Heggset EB, Norberg AL, Sorlie M, Vårum KM, Eijsink VGH. Production of chitooligosaccharides and their potential applications in medicine. Mar Drugs, 2010, 8: 1482-1517.

[7]

Adrangi S, Faramarzi MA. From bacteria to human: a journal into the world of chitinases. Biotechnol Adv, 2013, 31: 1786-1795.

[8]

Li H, Greene LH. Sequence and structural analysis of the chitinase insertion domain reveals two conserved motifs involved in chitin-binding. PLOS one, 2010, 5(1): e8654-e8664.

[9]

Watanabe T, Kanai R, Kawase T, Tanabe T, Mitsutomi M, Sakuda S, Miyashita K. Family 19 chitinases of Streptomyces species: characterization and distribution. Microbiology, 1999, 145: 3353-3363.

[10]

Watanabe T, Kobori K, Miyashita K, Fujii T, Sakai H, Uchida M, Tanaka H. Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity. J Biol Chem, 1993, 268: 18567-28572.

[11]

Vaaje-Kolstad G, Horn SJ, Sorlie M, Eijsink VGH. The chitinolytic machinery of Serratia marcescens—a model system for enzymatic degradation of recalcitrant polysaccharides. FEBS J, 2013, 280: 3028-3049.

[12]

Hashimoto M, Ikegami T, Seino S, Ohuchi N, Fukada H, Sugiyama J, Shirakawa M, Watanabe T. Expression and characterization of the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12. J Bacteriol, 2002, 182: 3045-3054.

[13]

Dahiya N, Tewari R, Hoondal GS. Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol, 2006, 71: 773-782.

[14]

Toratani T, Kezuka Y, Nonaka T, Hiragi Y, Watanabe T. Structure of full-length bacterial chitinase containing two fibronectin type III domains revealed by small angle X-ray scattering. Biochem Biophys Res Commun, 2006, 348: 814-818.

[15]

Watanabe T, Ariga Y, Sato U, Toratami T, Hashimoto M, Nikaidou N, Kezuka Y, Nonaka T, Sugiyama J. Aromatic residues within the substrate-binding cleft of Bacillus circulans chitinase A1 are essential for hydrolysis of crystalline chitin. Biochem J, 2002, 376: 37-244.

[16]

Watanabe T, Ishibashi A, Ariga Y, Hashimoto M, Nikaidou N, Sugiyama J, Matsumoto T, Nonaka T. Trp122 and Trp134 on the surface of the catalytic domain are essential for crystalline-chitin hydrolysis by Bacillus circulans chitinase A1. FEBS Lett, 2001, 494: 74-78.

[17]

Watanabe T, Ariga Y, Sato U, Toratani T, Hashimoto M, Nikaidou N, Kezuka Y, Nonaka T, Sugiyama J. Aromatic residues within the substrate-binding cleft of Bacillus circulans chitinase A1 are essential for hydrolysis of crystalline chitin. Biochem J, 2003, 376: 237-244.

[18]

Watanabe T, Suzuki K, Oyanagi W, Ohnishi K, Tanaka H. Gene cloning of chitinase A1 from Bacillus circulans WL-12 revealed its evolutionary relationship to Serratia chitinase and to the type III homology units of fibronectin. J Biol Chem, 1990, 265: 15659-15665.

[19]

Jee JG, Ikegami T, Hashimoto M, Kawabata T, Ikeguchi M, Watanabe T, Shirakawa M. Solution structure of the fibronectin type III domain from Bacillus circulans WL-12 chitinase A1. J Biol Chem, 2002, 277: 1388-1397.

[20]

Watanabe T, Ito Y, Yamada T, Hashimoto M, Sekine S, Tanaka H. The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation. J Bacteriol, 1994, 176: 4465-4472.

[21]

Uchiyam T, Katouno F, Nikaidou N, Nonaka T, Sugiyama J, Watanabe T. Roles of the exposed aromatic residues in crystalline chitin hydrolysis by chitinase A from Serratia marcescens 2170. J Biol Chem, 2001, 276: 41343-41349.

[22]

Horn SJ, Sikorski P, Cederkvist JB, Vaaje-Kolstad G, Sørlie M, Synstad B, Vriend G, Vårum KM, Eijsink VGH. Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides. Proc Natl Acad Sci USA, 2006, 103: 18089-18094.

[23]

Akira O. Willis A, Wood STK. Viscosimetric assay for chitinase. Methods in enzymology, 1998, New York: Academic Press.

[24]

Boller T. Willis A, Wood STK. Colorimetric assay for chitinase. Methods in enzymology, 1998, New York: Academic Press.

[25]

Enrico C. Willis A, Wood STK. Assay for chitinase using tritiated chitin. Methods in enzymology, 1998, New York: Academic Press.

[26]

Howard MB, Ekborg NA, Weiner RM, Hutcheson SW. Detection and characterization of chitinases and other chitin-modifying enzymes. J Ind Microbiol Biotechnol, 2003, 30: 627-635.

[27]

Zhang PYH, Himmel ME, Mielenz JR. Outlook for cellulose improvement: screening and selection strategies. Biotechnol Adv, 2006, 24: 452-481.

[28]

Eveleigh DE, Mandels M, Andreotti R, Roche C. Measurement of saccharifying cellulose. Biotechnol Biofuels, 2009, 2: 21-28.

[29]

Ferrari AR, Gaber Y, Fraaije MW. A fast, sensitive and easy colorimetric assay for chitinase and cellulose activity detection. Biotechnol Biofuels, 2014, 7: 37-44.

[30]

Shen CR, Chen YS, Yang CJ, Chen JK, Liu CL. Colloid chitin azure is a dispersible, low-cost substrate for chitinase measurements in a sensitive, fast, reproducible assay. Biomol Screening, 2010, 15: 213-217.

[31]

Horri SJ, Eijsink VGH. A reliable reducing end assay for chito-oligosaccharides. Carbohydr Polym, 2004, 56: 35-39.

[32]

Price NPJ, Naumann TA. A high-throughput matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry-based assay of chitinase activity. Anal Biochem, 2011, 411: 94-99.

[33]

Thadathil N, Velappan SP. Recent developments in chitosanase research and its biotechnological applications: a review. Food Chem, 2014, 150: 392-399.

[34]

Toratani T, Shoji T, Ikehara T, Suzuki K, Watanabe T. The importance of chitobiase and N-acetylglucosamine (GlcNAc) uptake in N,N′-diacetylchitobiose [(GlcNAc)2] utilization by Serratia marcescens 2170. Microbiol, 2008, 154: 1326-1332.

[35]

Suginta W, Chenark D, Mizuhara M, Fukamizo T. Novel β-N-acetylglucosaminidases from Vibrio harveyi 650: cloning, expression, enzymatic properties, and subsite identification. BMC Biochem, 2010, 11: 40-51.

[36]

da Silva AF, García-Fraga B, López-Seijas J, Sieiro C. Characterization and optimization of heterologous expression in Escherichia coli of the chitinase encoded by the chiA gene of Bacillus halodurans C-125. Process Biochem, 2014, 49: 1622-1629.

[37]

Songsiriritthigul C, Lapboonrueng S, Pechsrichuang P, Pesatcha P, Yamabhai M. Expression and characterization of Bacillus licheniformis chitinase (ChiA), suitable for bioconversion of chitin waste. Bioresour Technol, 2010, 101: 4096-4103.

[38]

Lobo MDP, Silva FDA, Landim PGC, Cruz PR, de Brito TL, de Medeiros SC, Oliveira JTA, Vasconcelos IM, Pereira HDM, Grangeiro TB. Expression and efficient secretion of a functional chitinase from Chromobacterium violaceum in Escherichia coli. BMC Biotechnol, 2013, 13: 46-60.

[39]

Ghasemi S, Ahmadian G, Sadeghi M, Zeigler DR, Rahimian H, Ghandili S, Naghibzadeh N, Dehestani A. First report of a bifunctional chitinase/lysozyme produced by Bacillus pumilus SG2. Enzyme Microb Technol, 2011, 48: 225-231.

[40]

García-Fraga B, da Silva AF, López-Seijas J, Sieim C. Functional expression and characterization of a chitinase from the marine archaeon Halobacterium salinarum CECT395 in Escherichia coli. Appl Microbiol Biotechnol, 2014, 98: 2133-2143.

[41]

Staufenberger T, Imhoff JF, Labes A. First crenarchaeal chitinase found in Sulfolobus tokodaii. Microbiol Res, 2012, 167: 262-269.

[42]

Casados-Vázquez LE, Avila-Cabrera S, Bideshi DK, Barboza-Corona JE (2014) Heterologous expression, purification and biochemical characterization of endochitinase ChiA74 from Bacillus thuringiensis. Protein Expression Purif Doi: 10.1016/j.pep.2014.11.015

[43]

Lonhienne T, Mavromatis K, Vorgias CE, Buchon L, Gerday C, Bouriotis V. Cloning, sequences, and characterization of two chitinase gene from the Antarctic Arthrobacter sp. strain TAD20: isolation and partial characterization of the enzymes. J Bacteriol, 2011, 183: 1773-1779.

[44]

Ashry ESHE, Aly MRE. Synthesis and biological relevance of N-acetylglucosamine-containing oligosaccharides. Pure Appl Chem, 2007, 12: 2229-2242.

[45]

Chen JK, Shen CR, Liu CL. N-acetylglucosamine: production and applications. Mar Drugs, 2010, 8: 2493-2516.

[46]

Dube B, Lüke HJ, Aumailley M, Prehm P. Hyaluronan reduced migration and proliferation in CHO cells. Biochim Biophys Acta, 2001, 1538: 283-289.

[47]

Chien LJ, Lee CK. Hyaluronic acid production by recombinant Lactococcus lactis. Appl Microbiol Biotechnol, 2007, 77: 339-346.

[48]

Chien LJ, Lee CK. Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin. Biotechnol Progr, 2007, 23: 1017-1022.

[49]

Danishefsky I, Steiner H, Bella A, Friedlander A. Investigations on the chemistry of heparin: VI position of the sulfate ester groups. J Biol Chem, 1969, 244: 1741-1745.

[50]

Bhavanandan VP, Meyer K. Mucopolysaccharides: N-acetylglucosamine- and galactose-6-sulfates from keratosulfate. Science, 1966, 151: 1404-1405.

[51]

Tsai M, Takeishi T, Thompson H, Langley KE, Zsebo KM, Metcalfe DD, Geissler EN, Galli SJ. Induction of mast cell proliferation, maturation, and protein synthesis by the rat c-kit ligand, stem cell factor. Proc Natl Acad Sci USA, 2001, 88(14): 6382-6386.

[52]

Ugorski M, Laskowska A. Sialyl Lewis (a): a tumor-associated carbohydrate antigen involved in adhesion and metastatic potential of cancer cells. Acta Biochim Pol, 2002, 49: 303-311.

[53]

Polley MJ, Phillips ML, Wayner E, Nudelman E, Singhal AK, Hakomori S, Paulson JC. CD62 and endothelial cell-leukocyte adhesion molecule 1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis x. Proc Natl Acad Sci USA, 1991, 88: 6224-6228.

[54]

Piacente F, Bernardi C, Marin M, Blanc G, Abergel C, Tonetti MG. Characterization of a UDP-N-acetylglucosamine biosynthetic pathway encoded by the giant DNA virus Mimivirus. Glycobiology, 2013

[55]

Vimr E, Lichtenteiger C. To sialylate, or not to sialylate: that is the question. Trends Microbiol, 2002, 10: 254-257.

[56]

Kang JH, Gu PF, Wang Y, Li YK, Yang F, Wang Q, Qi QS. Engineering of an N-acetylneuraminic acid synthetic pathway in Escherichia coli. Metab Eng, 2012, 14: 623-629.

[57]

Song MC, Kim E, Ban YH, Yoo YJ, Kim EJ, Park SR, Pandey RP, Sohng JK, Yoon YJ. Achievements and impacts of glycosylation reactions involved in natural product biosynthesis in prokaryotes. Appl Microbiol Biotechnol, 2013

[58]

Hjort K, Presti H, Elväng A, Marinelli F, Sjöling S. Bacterial chitinase with phytopathogen control capacity from suppressive soil revealed by functional metagenomics. Appl Microbiol Biotechnol, 2014, 98: 2819-2828.

[59]

Schmeisser C, Steele H, Streit WR. Metagenomics, biotechnology with non-culturable microbes. Appl Microbiol Biotechnol, 2007, 75: 955-962.

[60]

Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sørlie M, Eijsink VGH. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science, 2010, 330(6001): 219-222.

[61]

Wang M, Si T, Zhao HM. Biocatalyst development by directed evolution. Bioresour Technol, 2012, 115: 117-125.

[62]

Liang C, Firoroni M, Rodríguez-Ropero F, Xue Y, Schwaneberg U, Ma Y. Directed evolution of a thermophilic endoglucanase (Cel5A) into highly active Cel5A variants with an expanded temperature profile. J Biotechnol, 2011, 154: 46-53.

[63]

Fan YH, Fang WG, Xiao YH, Yang XY, Zhang YJ, Bidochka MJ, Pei Y. Directed evolution for increased chitinase activity. Appl Microbiol Biotechnol, 2007, 76: 135-139.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/