Role of artificial intelligence in the detection, assessment and outcome of gastroesophageal varices

Gianluca Rompianesi , Francesca Pegoraro , Bianca Pacilio , Giusy Petti , Gianluca Benassai , Micaela Cappuccio , Roberto Montalti , Roberto Troisi

Artificial Intelligence Surgery ›› 2025, Vol. 5 ›› Issue (3) : 434 -47.

PDF
Artificial Intelligence Surgery ›› 2025, Vol. 5 ›› Issue (3) :434 -47. DOI: 10.20517/ais.2025.09
Review

Role of artificial intelligence in the detection, assessment and outcome of gastroesophageal varices

Author information +
History +
PDF

Abstract

Gastroesophageal varices (GEVs) are one of the first clinically relevant consequences of PH, developing in 60%-80% of patients with liver cirrhosis. They are directly associated with a higher risk of decompensation and death. Screening endoscopy is the most common screening strategy in patients with cirrhosis. However, there is a tendency to find non-invasive predictors of GEVs to avoid costly and potentially harmful procedures safely. Artificial intelligence (AI)-driven predictive models effectively integrate diverse clinical, imaging, and laboratory data to provide non-invasive and precise risk stratification, reducing the reliance on endoscopic evaluations. Deep learning applications, particularly convolutional neural networks (CNNs), have proved highly effective in analyzing endoscopic images, thereby enhancing diagnostic accuracy beyond traditional visual inspection. Additionally, radiomics-based AI models utilizing computed tomography (CT) and elastography have enabled non-invasive risk assessment, improving predictions of bleeding risk and estimations of the hepatic venous pressure gradient (HVPG). Ethical considerations, such as data privacy and algorithmic bias, also require careful management. Future research should focus on prospective validation, real-world application studies, and the development of standardized AI frameworks to ensure the clinical applicability of these methods. AI-driven precision medicine has the potential to revolutionize the management of GEVs, offering more efficient, accurate, and individualized patient care while optimizing healthcare resource utilization.

Keywords

Artificial intelligence / esophageal varices / gastric varices / gastroesophageal varices / machine learning / deep learning / radiomics

Cite this article

Download citation ▾
Gianluca Rompianesi, Francesca Pegoraro, Bianca Pacilio, Giusy Petti, Gianluca Benassai, Micaela Cappuccio, Roberto Montalti, Roberto Troisi. Role of artificial intelligence in the detection, assessment and outcome of gastroesophageal varices. Artificial Intelligence Surgery, 2025, 5(3): 434-47 DOI:10.20517/ais.2025.09

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Garcia-Tsao G.Management of varices and variceal hemorrhage in cirrhosis.N Engl J Med2010;362:823-32

[2]

Bosch J,Fernández M.Hepatic endothelial dysfunction and abnormal angiogenesis: new targets in the treatment of portal hypertension.J Hepatol2010;53:558-67

[3]

Iwakiri Y.Pathophysiology of portal hypertension.Clin Liver Dis2014;18:281-91 PMCID:PMC3971388

[4]

Garcia-Tsao G,Berzigotti A.Portal hypertensive bleeding in cirrhosis: risk stratification, diagnosis, and management: 2016 practice guidance by the American Association for the study of liver diseases.Hepatology2017;65:310-35

[5]

Groszmann RJ, Garcia-Tsao G, Bosch J, et al; Portal Hypertension Collaborative Group. Beta-blockers to prevent gastroesophageal varices in patients with cirrhosis. N Engl J Med. 2005;353:2254-61.

[6]

D’Amico G,Pagliaro L.Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies.J Hepatol2006;44:217-31

[7]

Praktiknjo M, Simón-Talero M, Römer J, et al; Baveno VI-SPSS group of the Baveno Cooperation. Total area of spontaneous portosystemic shunts independently predicts hepatic encephalopathy and mortality in liver cirrhosis. J Hepatol. 2020;72:1140-50.

[8]

Rompianesi G,Fusai G.Pre-operative evaluation of spontaneous portosystemic shunts as a predictor of post-hepatectomy liver failure in patients undergoing liver resection for hepatocellular carcinoma.Eur J Surg Oncol2025;51:108778

[9]

Baiges A,Bosch J.Pharmacologic prevention of variceal bleeding and rebleeding.Hepatol Int2018;12:68-80

[10]

de Franchis R, Bosch J, Garcia-Tsao G, Reiberger T, Ripoll C; Baveno VII Faculty. Baveno VII - Renewing consensus in portal hypertension. J Hepatol. 2022;76:959-74. PMCID:PMC11090185

[11]

Kaplan DE,Thiele M.AASLD Practice Guidance on risk stratification and management of portal hypertension and varices in cirrhosis.Hepatology2024;79:1180-211

[12]

Seo YS.Prevention and management of gastroesophageal varices.Clin Mol Hepatol2018;24:20-42 PMCID:PMC5875194

[13]

Augustin S,Altamirano JT.Predicting early mortality after acute variceal hemorrhage based on classification and regression tree analysis.Clin Gastroenterol Hepatol2009;7:1347-54

[14]

D’Amico G,Morabito A.Competing risks and prognostic stages of cirrhosis: a 25-year inception cohort study of 494 patients.Aliment Pharmacol Ther2014;39:1180-93

[15]

Mattos ÂZ,John Neto G.Screening for esophageal varices in cirrhotic patients - Non-invasive methods.Ann Hepatol2019;18:673-8

[16]

Alowais SA,Alsuhebany N.Revolutionizing healthcare: the role of artificial intelligence in clinical practice.BMC Med Educ2023;23:689 PMCID:PMC10517477

[17]

Davenport T.The potential for artificial intelligence in healthcare.Future Healthc J2019;6:94-8 PMCID:PMC6616181

[18]

Rompianesi G,Ceresa CD,Troisi RI.Artificial intelligence in the diagnosis and management of colorectal cancer liver metastases.World J Gastroenterol2022;28:108-22 PMCID:PMC8793013

[19]

Muehlematter UJ,Vokinger KN.FDA-cleared artificial intelligence and machine learning-based medical devices and their 510(k) predicate networks.Lancet Digit Health2023;5:e618-26

[20]

European Association for the Study of the Liver. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis.J Hepatol2018;69:406-60

[21]

Tajiri T,Obara K.General rules for recording endoscopic findings of esophagogastric varices (2nd edition).Dig Endosc2010;22:1-9

[22]

Abd El-Salam SM,Hashem S.Performance of machine learning approaches on prediction of esophageal varices for Egyptian chronic hepatitis C patients.Inf Med Unlocked2019;17:100267

[23]

Bayani A,Hosseini A.Performance of machine learning techniques on prediction of esophageal varices grades among patients with cirrhosis.Clin Chem Lab Med2022;60:1955-62

[24]

Bayani A,Asadi F.Identifying predictors of varices grading in patients with cirrhosis using ensemble learning.Clin Chem Lab Med2022;60:1938-45

[25]

Şimşek C,Sahin H,Balaban YH.Artificial intelligence to predict esophageal varices in patients with cirrhosis.Acibadem Univ Saglik Bilim Derg2021;12:625-9Available from: https://www.researchgate.net/publication/352791299_Artificial_Intelligence_to_Predict_Esophageal_Varices_in_Patients_with_Cirrhosis. [Last accessed on 18 Aug 2025]

[26]

Dong TS,Aby ES.Machine learning-based development and validation of a scoring system for screening high-risk esophageal varices.Clin Gastroenterol Hepatol2019;17:1894-901.e1

[27]

Huang Y,Yang L.Development and validation of a radiomics signature as a non-invasive complementary predictor of gastroesophageal varices and high-risk varices in compensated advanced chronic liver disease: a multicenter study.J Gastroenterol Hepatol2021;36:1562-70

[28]

Huang Y,Zheng T.Development and validation of a machine learning-based model for varices screening in compensated cirrhosis (CHESS2001): an international multicenter study.Gastrointest Endosc2023;97:435-44.e2

[29]

Noureddin M,Tai D.Machine learning liver histology scores correlate with portal hypertension assessments in nonalcoholic steatohepatitis cirrhosis.Aliment Pharmacol Ther2023;57:409-17 PMCID:PMC10107331

[30]

Chen M,Xiao Y.Automated and real-time validation of gastroesophageal varices under esophagogastroduodenoscopy using a deep convolutional neural network: a multicenter retrospective study (with video).Gastrointest Endosc2021;93:422-32.e3

[31]

Procopet B,Robic MA.Serum tests, liver stiffness and artificial neural networks for diagnosing cirrhosis and portal hypertension.Dig Liver Dis2015;47:411-6

[32]

Yu Q,Li X.An imaging-based artificial intelligence model for non-invasive grading of hepatic venous pressure gradient in cirrhotic portal hypertension.Cell Rep Med2022;3:100563 PMCID:PMC9040173

[33]

Qi X,Liu F.Virtual hepatic venous pressure gradient with CT angiography (CHESS 1601): a prospective multicenter study for the noninvasive diagnosis of portal hypertension.Radiology2019;290:370-7

[34]

Simbrunner B,Scheiner B.Non-invasive detection of portal hypertension by enhanced liver fibrosis score in patients with different aetiologies of advanced chronic liver disease.Liver Int2020;40:1713-24 PMCID:PMC7383870

[35]

North Italian Endoscopic Club for the Study and Treatment of Esophageal Varices. Prediction of the first variceal hemorrhage in patients with cirrhosis of the liver and esophageal varices. A prospective multicenter study.N Engl J Med1988;319:983-9

[36]

Merkel C,Siringo S.Prognostic indicators of risk for first variceal bleeding in cirrhosis: a multicenter study in 711 patients to validate and improve the North Italian Endoscopic Club (NIEC) index.Am J Gastroenterol2000;95:2915-20

[37]

Hou Y,Zhang Q.Machine learning-based model for predicting the esophagogastric variceal bleeding risk in liver cirrhosis patients.Diagn Pathol2023;18:29 PMCID:PMC9948468

[38]

Agarwal S,Kumar M.Development of a machine learning model to predict bleed in esophageal varices in compensated advanced chronic liver disease: a proof of concept.J Gastroenterol Hepatol2021;36:2935-42

[39]

Wang J,Chen M.An interpretable artificial intelligence system for detecting risk factors of gastroesophageal variceal bleeding.NPJ Digit Med2022;5:183 PMCID:PMC9763258

[40]

Wang Y,Wang Y.Automated multimodal machine learning for esophageal variceal bleeding prediction based on endoscopy and structured data.J Digit Imaging2023;36:326-38 PMCID:PMC9984604

[41]

Zhong BY,Wang WS.Performance of artificial intelligence for prognostic prediction with the albumin-bilirubin and platelet-albumin-bilirubin for cirrhotic patients with acute variceal bleeding undergoing early transjugular intrahepatic portosystemic shunt.Eur J Gastroenterol Hepatol2021;33:e153-60

[42]

Liu H,Liu G,Zhou Q.Establishment of a non-invasive prediction model for the risk of oesophageal variceal bleeding using radiomics based on CT.Clin Radiol2022;77:368-76

[43]

Luo R,Gan W.Clinical-radiomics nomogram for predicting esophagogastric variceal bleeding risk noninvasively in patients with cirrhosis.World J Gastroenterol2023;29:1076-89 PMCID:PMC9950861

[44]

Yang JQ,Cao JM.Predicting gastro-oesophageal variceal bleeding in hepatitis B-related cirrhosis by CT radiomics signature.Clin Radiol2019;74:976.e1-9

[45]

Yan Y,Fan C.A novel machine learning-based radiomic model for diagnosing high bleeding risk esophageal varices in cirrhotic patients.Hepatol Int2022;16:423-32

[46]

Augustin S,Maurice JB.Expanding the Baveno VI criteria for the screening of varices in patients with compensated advanced chronic liver disease.Hepatology2017;66:1980-8

[47]

Zhang Y,Wen J.Splenic CT radiomics nomogram predicting the risk of upper gastrointestinal hemorrhage in cirrhosis.J Radiat Res Appl Sci2023;16:100486

[48]

Lin Y,Yu D.A novel radiomics-platelet nomogram for the prediction of gastroesophageal varices needing treatment in cirrhotic patients.Hepatol Int2021;15:995-1005

[49]

Tseng Y,Li S.Application of CT-based radiomics in predicting portal pressure and patient outcome in portal hypertension.Eur J Radiol2020;126:108927

[50]

Simsek C,Emir Tekin I,Yasemin Balaban H.Artificial intelligence to predict overall survivals of patients with cirrhosis and outcomes of variceal bleeding.Hepatol Forum2021;2:55-9 PMCID:PMC9138923

[51]

Wiens J,Sendak M.Do no harm: a roadmap for responsible machine learning for health care.Nat Med2019;25:1337-40

[52]

Tjoa E.A survey on explainable artificial intelligence (XAI): toward medical XAI.IEEE Trans Neural Netw Learn Syst2021;32:4793-813

[53]

Collins GS.Reporting of artificial intelligence prediction models.Lancet2019;393:1577-9

AI Summary AI Mindmap
PDF

282

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/