Emerging role of artificial intelligence in the care and management of lower extremity amputations and peripheral nerve injuries

Kayvon Jabbari , Lynn M. Orfahli , Matthew L. Iorio

Artificial Intelligence Surgery ›› 2025, Vol. 5 ›› Issue (2) : 200 -9.

PDF
Artificial Intelligence Surgery ›› 2025, Vol. 5 ›› Issue (2) :200 -9. DOI: 10.20517/ais.2024.77
Review

Emerging role of artificial intelligence in the care and management of lower extremity amputations and peripheral nerve injuries

Author information +
History +
PDF

Abstract

Lower limb amputation (LLA) secondary to trauma, oncologic, diabetic, and vascular disease represents a significant patient challenge in terms of restoring function to pre-injury levels. This can be secondary to wear and use of a prosthetic limb, as well as limitations in range of motion or chronic pain. This study aimed to review and discuss the available, and potentially soon-to-be-available, roles of artificial intelligence (AI) in extremity amputation care. Specifically, we discuss the current state of AI technology in LLA prevention, management, peripheral nerve injury treatment, and lower limb prosthesis design, as well as highlighting current advancements and the direction of these linked fields.

Keywords

Artificial intelligence / machine learning / deep learning / lower limb / amputation / prosthesis / peripheral nerve injury

Cite this article

Download citation ▾
Kayvon Jabbari, Lynn M. Orfahli, Matthew L. Iorio. Emerging role of artificial intelligence in the care and management of lower extremity amputations and peripheral nerve injuries. Artificial Intelligence Surgery, 2025, 5(2): 200-9 DOI:10.20517/ais.2024.77

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Molina CS. Lower extremity amputation. StatPearls Publishing: 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK546594/. [Last accessed on 22 Apr 2025]

[2]

Ziegler-Graham K,Ephraim PL,Brookmeyer R.Estimating the prevalence of limb loss in the United States: 2005 to 2050.Arch Phys Med Rehabil2008;89:422-9

[3]

Goodney PP,Nagle J,Zwolak RM.National trends in lower extremity bypass surgery, endovascular interventions, and major amputations.J Vasc Surg2009;50:54-60

[4]

Abu Dabrh AM,Undavalli C.The natural history of untreated severe or critical limb ischemia.J Vasc Surg2015;62:1642-51.e3

[5]

Humphries MD,Li CS,Romano PS.Amputation trends for patients with lower extremity ulcers due to diabetes and peripheral artery disease using statewide data.J Vasc Surg2016;64:1747-55.e3 PMCID:PMC5120998

[6]

Fortington LV,van Netten JJ,Rommers GM.Short and long term mortality rates after a lower limb amputation.Eur J Vasc Endovasc Surg2013;46:124-31

[7]

Oh TS,Hong JP.Diabetic foot reconstruction using free flaps increases 5-year-survival rate.J Plast Reconstr Aesthet Surg2013;66:243-50

[8]

Gailey R,Castles J,Roeder M.Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use.J Rehabil Res Dev2008;45:15-29

[9]

Kuiken TA,Reissman T,Dumanian GA.Innovative use of thighplasty to improve prosthesis fit and function in a transfemoral amputee.Plast Reconstr Surg Glob Open2018;6:e1632 PMCID:PMC5811293

[10]

Herr HM,Srinivasan S.Reinventing extremity amputation in the era of functional limb restoration.Ann Surg2021;273:269-79

[11]

Sinha R,Arokiasamy P.Factors affecting quality of life in lower limb amputees.Prosthet Orthot Int2011;35:90-6

[12]

van der Schans CP, Geertzen JH, Schoppen T, Dijkstra PU. Phantom pain and health-related quality of life in lower limb amputees.J Pain Symptom Manage2002;24:429-36

[13]

Reid RT,Gaston RG.Impact of timing of targeted muscle reinnervation on pain and opioid intake following major limb amputation.Hand2024;19:200-5 PMCID:PMC10953525

[14]

Kuiken TA,Hargrove L.Targeted muscle reinnervation for the upper and lower extremity.Tech Orthop2017;32:109-16 PMCID:PMC5448419

[15]

Dumanian GA,Mioton LM.Targeted muscle reinnervation treats neuroma and phantom pain in major limb amputees: a randomized clinical trial.Ann Surg2019;270:238-46

[16]

Mauch JT,Friedly JL.Targeted muscle reinnervation and regenerative peripheral nerve interfaces for pain prophylaxis and treatment: a systematic review.PM R2023;15:1457-65

[17]

Mohanty AJ,Kemp SWP.Prophylactic regenerative peripheral nerve interface (RPNI) surgery in pediatric lower limb amputation patients. Ann Surg. 2024.

[18]

Fleming A,Huang S,Ferris DP.Myoelectric control of robotic lower limb prostheses: a review of electromyography interfaces, control paradigms, challenges and future directions.J Neural Eng2021;18:041004 PMCID:PMC8694273

[19]

Sup F,Goldfarb M.Design and control of a powered transfemoral prosthesis.Int J Rob Res2008;27:263-73 PMCID:PMC2773553

[20]

Huang H,Lipschutz RD.A strategy for identifying locomotion modes using surface electromyography.IEEE Trans Biomed Eng2009;56:65-73 PMCID:PMC3025288

[21]

Hargrove LJ,Young AJ.Robotic leg control with EMG decoding in an amputee with nerve transfers.N Engl J Med2013;369:1237-42

[22]

Keller M,Thieringer F.Artificial intelligence in patient-specific hand surgery: a scoping review of literature.Int J Comput Assist Radiol Surg2023;18:1393-403 PMCID:PMC10363089

[23]

Komura D.Machine learning methods for histopathological image analysis.Comput Struct Biotechnol J2018;16:34-42 PMCID:PMC6158771

[24]

Siontis KC,Attia ZI.Artificial intelligence-enhanced electrocardiography in cardiovascular disease management.Nat Rev Cardiol2021;18:465-78 PMCID:PMC7848866

[25]

Dai L,Zhou H.Deep learning-based classification of lower extremity arterial stenosis in computed tomography angiography.Eur J Radiol2021;136:109528

[26]

Zhang JL,Li X.Exercise-induced calf muscle hyperemia: rapid mapping of magnetic resonance imaging using deep learning approach.Physiol Rep2020;8:e14563 PMCID:PMC7435025

[27]

McDermott MM.Lower extremity manifestations of peripheral artery disease: the pathophysiologic and functional implications of leg ischemia.Circ Res2015;116:1540-50 PMCID:PMC4410164

[28]

Hippe DS,Chen L.Confidence weighting for robust automated measurements of popliteal vessel wall magnetic resonance imaging.Circ Genom Precis Med2020;13:e002870

[29]

Chen L,Liu W.Fully automated and robust analysis technique for popliteal artery vessel wall evaluation (FRAPPE) using neural network models from standardized knee MRI.Magn Reson Med2020;84:2147-60 PMCID:PMC8320767

[30]

Kim S,Youn BD.Detection and severity assessment of peripheral occlusive artery disease via deep learning analysis of arterial pulse waveforms: proof-of-concept and potential challenges.Front Bioeng Biotechnol2020;8:720 PMCID:PMC7340176

[31]

Allen J,Iqbal S,Stansby G.Deep learning-based photoplethysmography classification for peripheral arterial disease detection: a proof-of-concept study.Physiol Meas2021;42:054002

[32]

Chemello G,Morettini M.Artificial intelligence methodologies applied to technologies for screening, diagnosis and care of the diabetic foot: a narrative review.Biosensors2022;12:985 PMCID:PMC9688674

[33]

Howard T,Papanas N.The advent of artificial intelligence in diabetic foot medicine: a new horizon, a new order, or a false dawn?.Int J Low Extrem Wounds2023;22:635-40

[34]

Cassidy B,Pappachan JM.Artificial intelligence for automated detection of diabetic foot ulcers: a real-world proof-of-concept clinical evaluation.Diabetes Res Clin Pract2023;205:110951

[35]

Chung J,Kosorok MR,Conte MS.Analysis of a machine learning-based risk stratification scheme for chronic limb-threatening ischemia.JAMA Netw Open2022;5:e223424 PMCID:PMC8941356

[36]

Oei CW,Zhang X.Risk prediction of diabetic foot amputation using machine learning and explainable artificial intelligence.J Diabetes Sci Technol2024;19322968241228606 PMCID:PMC11571574

[37]

Tjardes T,Imach S.Mangled extremity: limb salvage for reconstruction versus primary amputation.Curr Opin Crit Care2023;29:682-8

[38]

Perkins ZB,Sharrock A.Predicting the outcome of limb revascularization in patients with lower-extremity arterial trauma: development and external validation of a supervised machine-learning algorithm to support surgical decisions.Ann Surg2020;272:564-72

[39]

Soffin EM,Kumar KK.The prescription opioid crisis: role of the anaesthesiologist in reducing opioid use and misuse.Br J Anaesth2019;122:e198-208 PMCID:PMC8176648

[40]

Lawal OD,Murthy A.Rate and risk factors associated with prolonged opioid use after surgery: a systematic review and meta-analysis.JAMA Netw Open2020;3:e207367 PMCID:PMC7317603

[41]

Gabriel RA,Prasad RS.Machine learning approach to predicting persistent opioid use following lower extremity joint arthroplasty.Reg Anesth Pain Med2022;47:313-9 PMCID:PMC8961772

[42]

Ortiz-Catalan M,Kristoffersen MB.Phantom motor execution facilitated by machine learning and augmented reality as treatment for phantom limb pain: a single group, clinical trial in patients with chronic intractable phantom limb pain.Lancet2016;388:2885-94

[43]

Romeo-Guitart D,Herrando-Grabulosa M.Neuroprotective drug for nerve trauma revealed using artificial intelligence.Sci Rep2018;8:1879 PMCID:PMC5790005

[44]

Daeschler SC,Derakhshan D.Rapid, automated nerve histomorphometry through open-source artificial intelligence.Sci Rep2022;12:5975 PMCID:PMC8993871

[45]

Huang Y,Liu H.3D printing of functional nerve guide conduits.Burns Trauma2021;9:tkab011 PMCID:PMC8240533

[46]

Xiao B,Su AA.Nerve wrap for local delivery of FK506/tacrolimus accelerates nerve regeneration.Int J Mol Sci2024;25:847 PMCID:PMC10815243

[47]

Guo JL,Longaker MT.Machine learning in tissue engineering.Tissue Eng Part A2023;29:2-19 PMCID:PMC9885550

[48]

Li F,Cao T.Design of self-assembly dipeptide hydrogels and machine learning via their chemical features.Proc Natl Acad Sci U S A2019;116:11259-64 PMCID:PMC6561259

[49]

Kosuri S,Mugnier H.Machine-assisted discovery of chondroitinase ABC complexes toward sustained neural regeneration.Adv Healthc Mater2022;11:e2102101 PMCID:PMC9119153

[50]

Miller WC,Deathe AB.Balance confidence among people with lower-limb amputations.Phys Ther2002;82:856-65

[51]

Miller WC,Deathe B.The prevalence and risk factors of falling and fear of falling among lower extremity amputees.Arch Phys Med Rehabil2001;82:1031-7

[52]

Blanke O.Multisensory brain mechanisms of bodily self-consciousness.Nat Rev Neurosci2012;13:556-71

[53]

Jaegers SM,de Jongh HJ.Prosthetic gait of unilateral transfemoral amputees: a kinematic study.Arch Phys Med Rehabil1995;76:736-43

[54]

Crea S,Donati M,Vitiello N.Providing time-discrete gait information by wearable feedback apparatus for lower-limb amputees: usability and functional validation.IEEE Trans Neural Syst Rehabil Eng2015;23:250-7

[55]

Fan RE,King CH.A haptic feedback system for lower-limb prostheses.IEEE Trans Neural Syst Rehabil Eng2008;16:270-7

[56]

Dietrich C,Seifert S.Leg prosthesis with somatosensory feedback reduces phantom limb pain and increases functionality.Front Neurol2018;9:270 PMCID:PMC5932153

[57]

Crea S,Knaepen K,Vitiello N.Time-discrete vibrotactile feedback contributes to improved gait symmetry in patients with lower limb amputations: case series.Phys Ther2017;97:198-207

[58]

Raspopovic S.Advancing limb neural prostheses.Science2020;370:290-1

[59]

Tan DW,Keith MW,Tyler J.A neural interface provides long-term stable natural touch perception.Sci Transl Med2014;6:257ra138 PMCID:PMC5517305

[60]

Davis TS,Hutchinson DT.Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves.J Neural Eng2016;13:036001

[61]

Charkhkar H,Marasco PD,Tyler DJ.High-density peripheral nerve cuffs restore natural sensation to individuals with lower-limb amputations.J Neural Eng2018;15:056002

[62]

Koh RGL,Nachman AI.Selective peripheral nerve recordings from nerve cuff electrodes using convolutional neural networks.J Neural Eng2020;17:016042

[63]

Petrini FM,Bumbasirevic M.Enhancing functional abilities and cognitive integration of the lower limb prosthesis.Sci Transl Med2019;11:eaav8939

[64]

Zelechowski M,Raspopovic S.A computational model to design neural interfaces for lower-limb sensory neuroprostheses.J Neuroeng Rehabil2020;17:24 PMCID:PMC7029520

[65]

Hebert JS,Stiegelmar R.Osseointegration for lower-limb amputation: a systematic review of clinical outcomes.JBJS Rev2017;5:e10

[66]

Lu L,Guan K,Yuan F.Artificial neural network for cytocompatibility and antibacterial enhancement induced by femtosecond laser micro/nano structures.J Nanobiotechnology2022;20:365 PMCID:PMC9357338

[67]

Revilla-León M,Vyas S.Artificial intelligence applications in implant dentistry: a systematic review.J Prosthet Dent2023;129:293-300

[68]

Khan B,Qureshi A.Drawbacks of artificial intelligence and their potential solutions in the healthcare sector.Biomed Mater Devices2023;1:731-8 PMCID:PMC9908503

AI Summary AI Mindmap
PDF

208

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/