Artificial intelligence and image guidance in minimally invasive pancreatic surgery: current status and future challenges

Philip C. Müller , Suna Erdem , Christoph Kuemmerli , Joël L. Lavanchy , Marko Kraljevic , Daniel C. Steinemann , Adrian T. Billeter , Beat P. Müller

Artificial Intelligence Surgery ›› 2025, Vol. 5 ›› Issue (2) : 170 -81.

PDF
Artificial Intelligence Surgery ›› 2025, Vol. 5 ›› Issue (2) :170 -81. DOI: 10.20517/ais.2024.74
Review

Artificial intelligence and image guidance in minimally invasive pancreatic surgery: current status and future challenges

Author information +
History +
PDF

Abstract

Artificial intelligence (AI), machine learning (ML), and image guidance are increasingly being used to support surgeons in preoperative, intraoperative, and postoperative decision making and optimized patient care. Surgery is the cornerstone of curative treatment in pancreatic diseases, and a large amount of perioperative data are becoming available with the widespread application of minimally invasive surgical techniques. AI is showing promise in the prediction of malignancy and resectability from preoperative images. A further clinical focus is the prediction of postoperative complications, especially pancreatic fistula, and several AI algorithms now outperform conventional fistula risk scores. Future research will be directed toward refinement of intraoperative decision support systems, individualization of surgical training, and improvement of pre- and postoperative oncologic risk stratification to personalize the sequence of surgery and chemotherapy. This review summarizes recent developments in AI and image guidance for pancreatic surgery.

Keywords

Artificial intelligence / image guidance / machine learning / pancreatic cancer / personalized medicine / pancreatic surgery

Cite this article

Download citation ▾
Philip C. Müller, Suna Erdem, Christoph Kuemmerli, Joël L. Lavanchy, Marko Kraljevic, Daniel C. Steinemann, Adrian T. Billeter, Beat P. Müller. Artificial intelligence and image guidance in minimally invasive pancreatic surgery: current status and future challenges. Artificial Intelligence Surgery, 2025, 5(2): 170-81 DOI:10.20517/ais.2024.74

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pfister M,Müller PC.Minimally invasive versus open pancreatic surgery: meta-analysis of randomized clinical trials.BJS Open2023;7:zrad087 PMCID:PMC10496866

[2]

Wellner UF,Sick O.Hybrid laparoscopic versus open pylorus-preserving pancreatoduodenectomy: retrospective matched case comparison in 80 patients.Langenbecks Arch Surg2014;399:849-56

[3]

Mendoza AS 3rd,Yoon YS,Choi Y.Laparoscopy-assisted pancreaticoduodenectomy as minimally invasive surgery for periampullary tumors: a comparison of short-term clinical outcomes of laparoscopy-assisted pancreaticoduodenectomy and open pancreaticoduodenectomy.J Hepatobiliary Pancreat Sci2015;22:819-24

[4]

Ramshorst TME, van Hilst J, Bannone E, et al; 2022 first Internationally validated European Guidelines Meeting on Minimally Invasive Pancreatic Surgery and the IHPBA Innovation and Research Committees. International survey on opinions and use of robot-assisted and laparoscopic minimally invasive pancreatic surgery: 5-year follow up.HPB2024;26:63-72

[5]

der Heijde N, Vissers FL, Manzoni A, et al; European Consortium on Minimally Invasive Pancreatic Surgery. Use and outcome of minimally invasive pancreatic surgery in the European E-MIPS registry.HPB2023;25:400-8

[6]

Gagner M.Laparoscopic pylorus-preserving pancreatoduodenectomy.Surg Endosc1994;8:408-10

[7]

Palanivelu C,Sabnis SC.Randomized clinical trial of laparoscopic versus open pancreatoduodenectomy for periampullary tumours.Br J Surg2017;104:1443-50

[8]

Poves I,Morató O.Comparison of perioperative outcomes between laparoscopic and open approach for pancreatoduodenectomy: the PADULAP randomized controlled trial.Ann Surg2018;268:731-9

[9]

Wang M,Qin T.Short-term outcomes following laparoscopic vs open pancreaticoduodenectomy in patients with pancreatic ductal adenocarcinoma: a randomized clinical trial.JAMA Surg2023;158:1245-53 PMCID:PMC10600717

[10]

Baker EH,Seshadri R.Robotic pancreaticoduodenectomy for pancreatic adenocarcinoma: role in 2014 and beyond.J Gastrointest Oncol2015;6:396-405 PMCID:PMC4502160

[11]

Shyr YM,Chen SC,Shyr BS.Robotic pancreaticoduodenectomy for pancreatic head cancer and periampullary lesions.Ann Gastroenterol Surg2021;5:589-96 PMCID:PMC8452471

[12]

Nickel F,Müller PC.Short-term outcomes of robotic versus open pancreatoduodenectomy: propensity score-matched analysis.Ann Surg2024;279:665-70

[13]

Müller PC,Nickel F.Robotic distal pancreatectomy: a novel standard of care?.Ann Surg2023;278:253-9

[14]

Yu KH,Kohane IS.Artificial intelligence in healthcare.Nat Biomed Eng2018;2:719-31

[15]

McCarthy MLM, Nathaniel Rochester, Claude E. A proposal for the dartmouth summer research project on artificial intelligence.AI Magazine1995;27:4

[16]

De Simone B, Chouillard E, Gumbs AA, Loftus TJ, Kaafarani H, Catena F. Artificial intelligence in surgery: the emergency surgeon's perspective (the ARIES project).Discov Health Syst2022;1:9 PMCID:PMC9734362

[17]

Madani A,Altieri MS.Artificial intelligence for intraoperative guidance: using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy.Ann Surg2022;276:363-9 PMCID:PMC8186165

[18]

Sadda P,Dombrowski M,Bahtiyar MO.Deep-learned placental vessel segmentation for intraoperative video enhancement in fetoscopic surgery.Int J Comput Assist Radiol Surg2019;14:227-35 PMCID:PMC6438174

[19]

Mascagni P,Alapatt D.Artificial intelligence for surgical safety: automatic assessment of the critical view of safety in laparoscopic cholecystectomy using deep learning.Ann Surg2022;275:955-61

[20]

Kitaguchi D,Matsuzaki H.Computer-assisted real-time automatic prostate segmentation during TaTME: a single-center feasibility study.Surg Endosc2021;35:2493-9

[21]

Kuemmerli C,Berchtold C.Artificial intelligence in pancreatic surgery: current applications.Journal of Pancreatology2023;6:74-81

[22]

Asbun HJ, Moekotte AL, Vissers FL, et al; International Study Group on Minimally Invasive Pancreas Surgery (I-MIPS). The miami international evidence-based guidelines on minimally invasive pancreas resection. Ann Surg. 2020;271:1-14.

[23]

Yan Y,Chang C,Sha Y.Laparoscopic versus open pancreaticoduodenectomy for pancreatic and periampullary tumor: a meta-analysis of randomized controlled trials and non-randomized comparative studies.Front Oncol2022;12:1093395 PMCID:PMC9905842

[24]

Abu Hilal M, van Ramshorst TME, Boggi U, et al; Collaborators. The Brescia internationally validated European guidelines on minimally invasive pancreatic surgery (EGUMIPS).Ann Surg2024;279:45-57 PMCID:PMC10727198

[25]

de Rooij T, van Hilst J, van Santvoort H, et al; Dutch Pancreatic Cancer Group. Minimally invasive versus open distal pancreatectomy (LEOPARD): a multicenter patient-blinded randomized controlled trial.Ann Surg2019;269:2-9

[26]

Korrel M, Jones LR, van Hilst J, et al; European Consortium on Minimally Invasive Pancreatic Surgery (E-MIPS). Minimally invasive versus open distal pancreatectomy for resectable pancreatic cancer (DIPLOMA): an international randomised non-inferiority trial. Lancet Reg Health Eur. 2023;31:100673. PMCID:PMC10339208

[27]

Yin T,Wei K.Comparison of safety and effectiveness between laparoscopic and open pancreatoduodenectomy: a systematic review and meta-analysis.Int J Surg2022;105:106799

[28]

Nickel F,Kowalewski KF.Laparoscopic versus open pancreaticoduodenectomy: a systematic review and meta-analysis of randomized controlled trials.Ann Surg2020;271:54-66

[29]

van Hilst J, de Rooij T, Bosscha K, et al; Dutch Pancreatic Cancer Group. Laparoscopic versus open pancreatoduodenectomy for pancreatic or periampullary tumours (LEOPARD-2): a multicentre, patient-blinded, randomised controlled phase 2/3 trial.Lancet Gastroenterol Hepatol2019;4:199-207

[30]

Choi M,Rho SY,Kang CM.Comparing laparoscopic and open pancreaticoduodenectomy in patients with pancreatic head cancer: oncologic outcomes and inflammatory scores.J Hepatobiliary Pancreat Sci2020;27:124-31

[31]

Sharpe SM,Wang CE.Early national experience with laparoscopic pancreaticoduodenectomy for ductal adenocarcinoma: a comparison of laparoscopic pancreaticoduodenectomy and open pancreaticoduodenectomy from the national cancer data base.J Am Coll Surg2015;221:175-84

[32]

Yan JF,Chen K,Chen QL.Minimally invasive pancreatoduodenectomy is associated with lower morbidity compared to open pancreatoduodenectomy: an updated meta-analysis of randomized controlled trials and high-quality nonrandomized studies.Medicine2019;98:e16730 PMCID:PMC6708972

[33]

Giulianotti PC,Angelini M.Robotics in general surgery: personal experience in a large community hospital.Arch Surg2003;138:777-84

[34]

van Ramshorst TME, van Bodegraven EA, Zampedri P, Kasai M, Besselink MG, Abu Hilal M. Robot-assisted versus laparoscopic distal pancreatectomy: a systematic review and meta-analysis including patient subgroups.Surg Endosc2023;37:4131-43 PMCID:PMC10235152

[35]

Liu Q,Zhang X.Perioperative and oncological outcomes of robotic versus open pancreaticoduodenectomy in low-risk surgical candidates: a multicenter propensity score-matched study.Ann Surg2023;277:e864-71

[36]

Tao HS,Luo W.Application of real-time augmented reality laparoscopic navigation in splenectomy for massive splenomegaly.World J Surg2021;45:2108-15

[37]

Müller PC,Steinemann DC.Image-guided minimally invasive endopancreatic surgery using a computer-assisted navigation system.Surg Endosc2021;35:1610-7

[38]

Müller PC,Nickel F.Transduodenal-transpapillary endopancreatic surgery with a rigid resectoscope: experiments on ex vivo, in vivo animal models and human cadavers.Surg Endosc2017;31:4131-5

[39]

Miyamoto R,Nakayama K.Three-dimensional simulation of pancreatic surgery showing the size and location of the main pancreatic duct.Surg Today2017;47:357-64

[40]

Lin C,Zheng H.Three-dimensional visualization technology used in pancreatic surgery: a valuable tool for surgical trainees.J Gastrointest Surg2020;24:866-73 PMCID:PMC7165138

[41]

Fang CH,Wang H.A new approach for evaluating the resectability of pancreatic and periampullary neoplasms.Pancreatology2012;12:364-71

[42]

Fang CH,Wang X.Three-dimensional reconstruction of the peripancreatic vascular system based on computed tomographic angiography images and its clinical application in the surgical management of pancreatic tumors.Pancreas2014;43:389-95

[43]

Bari H,Dasari BVM.Role of artificial intelligence in hepatobiliary and pancreatic surgery.World J Gastrointest Surg2021;13:7-18 PMCID:PMC7830072

[44]

Onda S,Kanehira M.Identification of inferior pancreaticoduodenal artery during pancreaticoduodenectomy using augmented reality-based navigation system.J Hepatobiliary Pancreat Sci2014;21:281-7

[45]

Tang R,Hou Y.Augmented reality-assisted pancreaticoduodenectomy with superior mesenteric vein resection and reconstruction.Gastroenterol Res Pract2021;2021:9621323 PMCID:PMC7990556

[46]

Mieog JSD,Zlitni A.Fundamentals and developments in fluorescence-guided cancer surgery.Nat Rev Clin Oncol2022;19:9-22

[47]

Metildi CA,Pu M.Fluorescence-guided surgery with a fluorophore-conjugated antibody to carcinoembryonic antigen (CEA), that highlights the tumor, improves surgical resection and increases survival in orthotopic mouse models of human pancreatic cancer.Ann Surg Oncol2014;21:1405-11 PMCID:PMC4334378

[48]

Juhl K,Rubek N,von Buchwald C.Improved surgical resection of metastatic pancreatic cancer using uPAR targeted in vivo fluorescent guidance: comparison with traditional white light surgery.Oncotarget2019;10:6308-16 PMCID:PMC6824874

[49]

Oba A,Sato T.Impact of indocyanine green-fluorescence imaging on distal pancreatectomy with celiac axis resection combined with reconstruction of the left gastric artery.HPB2019;21:619-25

[50]

Wagner M,Bodenstedt S.Surgomics: personalized prediction of morbidity, mortality and long-term outcome in surgery using machine learning on multimodal data.Surg Endosc2022;36:8568-91 PMCID:PMC9613751

[51]

Garrow CR,Li L.Machine learning for surgical phase recognition: a systematic review.Ann Surg2021;273:684-93

[52]

Kitaguchi D,Matsuzaki H.Real-time automatic surgical phase recognition in laparoscopic sigmoidectomy using the convolutional neural network-based deep learning approach.Surg Endosc2020;34:4924-31

[53]

Kitaguchi D,Matsuzaki H.Deep learning-based automatic surgical step recognition in intraoperative videos for transanal total mesorectal excision.Surg Endosc2022;36:1143-51 PMCID:PMC8758657

[54]

Ramesh S,Gonzalez C.Multi-task temporal convolutional networks for joint recognition of surgical phases and steps in gastric bypass procedures.Int J Comput Assist Radiol Surg2021;16:1111-9 PMCID:PMC8260406

[55]

Ward TM,Ban Y.Automated operative phase identification in peroral endoscopic myotomy.Surg Endosc2021;35:4008-15 PMCID:PMC7854950

[56]

Kiyasseh D,Haque TF.A vision transformer for decoding surgeon activity from surgical videos.Nat Biomed Eng2023;7:780-96 PMCID:PMC10307635

[57]

Fan B,Hu Y.An intelligent decision system for intraoperative somatosensory evoked potential monitoring.IEEE Trans Neural Syst Rehabil Eng2016;24:300-7

[58]

Navarrete-Welton AJ.Current applications of artificial intelligence for intraoperative decision support in surgery.Front Med2020;14:369-81

[59]

Smits FJ, Henry AC, Besselink MG, et al; Dutch Pancreatic Cancer Group. Algorithm-based care versus usual care for the early recognition and management of complications after pancreatic resection in the Netherlands: an open-label, nationwide, stepped-wedge cluster-randomised trial. Lancet. 2022;399:1867-75.

[60]

Merath K,Mehta R.Use of machine learning for prediction of patient risk of postoperative complications after liver, pancreatic, and colorectal surgery.J Gastrointest Surg2020;24:1843-51

[61]

Sahara K,Tsilimigras DI.Machine learning predicts unpredicted deaths with high accuracy following hepatopancreatic surgery.Hepatobiliary Surg Nutr2021;10:20-30 PMCID:PMC7867718

[62]

Kambakamba P,Herrera PE.The potential of machine learning to predict postoperative pancreatic fistula based on preoperative, non-contrast-enhanced CT: a proof-of-principle study.Surgery2020;167:448-54

[63]

Skawran SM,Baessler B.Can magnetic resonance imaging radiomics of the pancreas predict postoperative pancreatic fistula?.Eur J Radiol2021;140:109733

[64]

Verma A,Hadaya J.Machine learning-based prediction of postoperative pancreatic fistula following pancreaticoduodenectomy.Ann Surg2024;280:325-31

[65]

Ashraf Ganjouei A,Wang JJ.A machine learning approach to predict postoperative pancreatic fistula after pancreaticoduodenectomy using only preoperatively known data.Ann Surg Oncol2023;30:7738-47

[66]

Haney CM,Limen EF.Training and learning curves in minimally invasive pancreatic surgery: from simulation to mastery.Journal of Pancreatology2020;3:101-10

[67]

Müller PC,Cizmic A.Learning curves in open, laparoscopic, and robotic pancreatic surgery: a systematic review and proposal of a standardization.Ann Surg Open2022;3:e111 PMCID:PMC10431463

[68]

Müller PC,Hackert T.Robotic pancreaticoduodenectomy after the learning curve-a new hope.Hepatobiliary Surg Nutr2022;11:489-91 PMCID:PMC9186209

[69]

Rice MK,Bellon J.Association of mentorship and a formal robotic proficiency skills curriculum with subsequent generations’ learning curve and safety for robotic pancreaticoduodenectomy.JAMA Surg2020;155:607-15 PMCID:PMC7240650

[70]

Zwart MJW, Nota CLM, de Rooij T, et al; Dutch Pancreatic Cancer Group. Outcomes of a multicenter training program in robotic pancreatoduodenectomy (LAELAPS-3). Ann Surg. 2022;276:e886-95.

[71]

Fazlollahi AM,Alsayegh A.Effect of artificial intelligence tutoring vs expert instruction on learning simulated surgical skills among medical students: a randomized clinical trial.JAMA Netw Open2022;5:e2149008 PMCID:PMC8864513

[72]

Kiyasseh D,Haque TF.A multi-institutional study using artificial intelligence to provide reliable and fair feedback to surgeons.Commun Med2023;3:42 PMCID:PMC10063640

[73]

Bissonnette V, Mirchi N, Ledwos N, Alsidieri G, Winkler-Schwartz A, Del Maestro RF; Neurosurgical Simulation & Artificial Intelligence Learning Centre. Artificial intelligence distinguishes surgical training levels in a virtual reality spinal task. J Bone Joint Surg Am. 2019;101:e127. PMCID:PMC7406145

[74]

Satapathy P,Rustagi S,Padhi BK.Artificial intelligence in surgical education and training: opportunities, challenges, and ethical considerations - correspondence.Int J Surg2023;109:1543-4 PMCID:PMC10389387

[75]

Kowalewski KF,Schmidt MW.Development and validation of a sensor- and expert model-based training system for laparoscopic surgery: the iSurgeon.Surg Endosc2017;31:2155-65

[76]

Nickel F,Chand M.Telestration and augmented reality in minimally invasive surgery: an invaluable tool in the age of COVID-19 for remote proctoring and telementoring.JAMA Surg2022;157:169-70

[77]

Pedrett R,Beldi G,Lavanchy JL.Technical skill assessment in minimally invasive surgery using artificial intelligence: a systematic review.Surg Endosc2023;37:7412-24 PMCID:PMC10520175

[78]

Arora A,Palmer J.The value of standards for health datasets in artificial intelligence-based applications.Nat Med2023;29:2929-38 PMCID:PMC10667100

[79]

Kelly CJ,Suleyman M,King D.Key challenges for delivering clinical impact with artificial intelligence.BMC Med2019;17:195 PMCID:PMC6821018

[80]

Plana D,Grimshaw AA,Sung JJY.Randomized clinical trials of machine learning interventions in health care: a systematic review.JAMA Netw Open2022;5:e2233946 PMCID:PMC9523495

[81]

Hasan HE,Khabour OF.Ethical considerations and concerns in the implementation of AI in pharmacy practice: a cross-sectional study.BMC Med Ethics2024;25:55 PMCID:PMC11096093

[82]

Ramezani M,Bakhtiari A,Fazaeli AA.The application of artificial intelligence in health financing: a scoping review.Cost Eff Resour Alloc2023;21:83 PMCID:PMC10626800

AI Summary AI Mindmap
PDF

90

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/