AI in plastic surgery: customizing care for each patient
Camille Brenac , Alexander Z. Fazilat , Mahsa Fallah , Danae Kawamoto-Duran , Parker S. Sunwoo , Michael T. Longaker , Derrick C. Wan , Jason L. Guo
Artificial Intelligence Surgery ›› 2024, Vol. 4 ›› Issue (4) : 296 -315.
AI in plastic surgery: customizing care for each patient
Artificial intelligence (AI) and machine learning (ML) involve the usage of complex algorithms to identify patterns, predict future outcomes, generate new data, and perform other tasks that typically require human intelligence. AI tools have been progressively adopted by multiple disciplines of surgery, enabling increasingly patient-specific care, as well as more precise surgical modeling and assessment. For instance, AI tools such as ChatGPT have been applied to enhance both patient educational materials and patient-surgeon communication. Additionally, AI tools have helped support pre- and postoperative assessment in a diverse set of procedures, including breast reconstructions, facial surgeries, hand surgeries, wound healing operations, and burn surgeries. Further, ML-supported 3D modeling has now been utilized for patient-specific surgical planning and may also be combined with 3D printing technologies to generate patient-customized, implantable constructs. Ultimately, the advent of AI and its intersection with surgical practice have demonstrated immense potential to transform patient care by making multiple facets of the surgical process more efficient, precise, and patient-specific.
Plastic surgery / machine learning / artificial intelligence / algorithms
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
Loos NL, Hoogendam L, Souer JS, et al; the Hand-Wrist Study Group. Machine learning can be used to predict function but not pain after surgery for thumb carpometacarpal osteoarthritis. Clin Orthop Relat Res 2022;480:1271-84. PMCID:PMC9191288 |
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
/
| 〈 |
|
〉 |