Beyond AI and robotics: the dawn of surgical automation in spine surgery

Nishanth S. Sadagopan , Dillan Prasad , Rishi Jain , Christopher Ahuja , Nader S. Dahdaleh , Najib E. El Tecle

Artificial Intelligence Surgery ›› 2024, Vol. 4 ›› Issue (4) : 387 -400.

PDF
Artificial Intelligence Surgery ›› 2024, Vol. 4 ›› Issue (4) :387 -400. DOI: 10.20517/ais.2024.34
Review

Beyond AI and robotics: the dawn of surgical automation in spine surgery

Author information +
History +
PDF

Abstract

Artificial intelligence (AI), deep learning (DL), and machine learning (ML) algorithms are revolutionizing spine surgery. Soon, these technologies may allow the integration of automated devices into clinical practice. The roles of such devices are yet to be imagined and then developed, but one could assume that automated surgical devices can assist spine surgeons in a variety of ways, such as contextual guidance, precise screw placements, or intraoperative monitoring. In the not-too-distant future, such devices may be able to perform entire surgeries autonomously. Current literature suggests that advancements toward autonomous robotic surgery may improve surgical approaches and reduce negative clinical variation in spine surgery outcomes. This review aims to examine the current trends, practices, and advancements in surgical automation and provide an overview of the stages of automation of devices currently employed within spine surgery.

Keywords

Neurological surgery / spine surgery / robotic surgery / artificial intelligence / machine learning / deep learning / surgical automation

Cite this article

Download citation ▾
Nishanth S. Sadagopan, Dillan Prasad, Rishi Jain, Christopher Ahuja, Nader S. Dahdaleh, Najib E. El Tecle. Beyond AI and robotics: the dawn of surgical automation in spine surgery. Artificial Intelligence Surgery, 2024, 4(4): 387-400 DOI:10.20517/ais.2024.34

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Stahlschmidt SR,Synnergren J.Multimodal deep learning for biomedical data fusion: a review.Brief Bioinform2022;23:bbab569 PMCID:PMC8921642

[2]

Nambiar J. Healthcare organizations must create a strong data foundation to fully benefit from generative AI. Available from: https://www.cio.com/article/1293408/healthcare-organizations-must-create-a-strong-data-foundation-to-fully-benefit-from-generative-ai.html#. [Last accessed on 5 Nov 2024]

[3]

Shademan A,Leonard S,Kim PCW.Feasibility of near-infrared markers for guiding surgical robots. In: Optical Modeling and Performance Predictions VI; 2013. pp. 123-32.

[4]

Buza JA 3rd,Lehman RA Jr.Robotic-assisted cortical bone trajectory (CBT) screws using the Mazor X Stealth Edition (MXSE) system: workflow and technical tips for safe and efficient use.J Robot Surg2021;15:13-23

[5]

Drossopoulos PN,Ononogbu-Uche FC.Pushing the limits of minimally invasive spine surgery-from preoperative to intraoperative to postoperative management.J Clin Med2024;13:2410 PMCID:PMC11051300

[6]

Nakazawa A,Harada K.Feedback methods for collision avoidance using virtual fixtures for robotic neurosurgery in deep and narrow spaces. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob); 2016 Jun 26-29; Singapore. IEEE; 2016. pp. 247-52.

[7]

Bergholz M,Weber BM.The benefits of haptic feedback in robot assisted surgery and their moderators: a meta-analysis.Sci Rep2023;13:19215 PMCID:PMC10628231

[8]

Kuo LJ,Lin YK,Tang YH.A pilot study comparing ergonomics in laparoscopy and robotics: beyond anecdotes, and subjective claims.J Surg Case Rep2020;2020:rjaa005 PMCID:PMC7033486

[9]

Kwoh YS,Jonckheere EA.A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery.IEEE Trans Biomed Eng1988;35:153-60

[10]

Davies B.A review of robotics in surgery.Proc Inst Mech Eng H2000;214:129-40

[11]

Paul HA,Mittlestadt B.Development of a surgical robot for cementless total hip arthroplasty. Clin Orthop Relat Res 1992:57-66.

[12]

Marescaux J,Gagner M.Transatlantic robot-assisted telesurgery.Nature2001;413:379-80

[13]

Rosen J,Satava RM.Surgical robotics: systems applications and visions. New York: Springer; 2011.

[14]

Ma R,Lee R,Hung AJ.Machine learning in the optimization of robotics in the operative field.Curr Opin Urol2020;30:808-16 PMCID:PMC7735438

[15]

Saeidi H,Kam M.Autonomous robotic laparoscopic surgery for intestinal anastomosis.Sci Robot2022;7:eabj2908 PMCID:PMC8992572

[16]

Liow MHL,Pang HN,Yeo SJ.THINK surgical TSolution-One® (Robodoc) total knee arthroplasty.SICOT J2017;3:63 PMCID:PMC5663203

[17]

Yang GZ,Cleary K.Medical robotics-regulatory, ethical, and legal considerations for increasing levels of autonomy.Sci Robot2017;2:eaam8638

[18]

Committee SO-RAVS Taxonomy and definitions for terms related to on-road motor vehicle J3016_202104. Available from: https://www.sae.org/standards/content/j3016_202104/. [Last accessed on 5 Nov 2024]

[19]

Rivero-Moreno Y,Losada-Muñoz P.Autonomous robotic surgery: has the future arrived?.Cureus2024;16:e52243 PMCID:PMC10862530

[20]

Ortmaier T,Döbele S.Experiments on robot-assisted navigated drilling and milling of bones for pedicle screw placement.Int J Med Robot2006;2:350-63

[21]

Lauretti C,Tamantini C,Luzio FSD.A surgeon-robot shared control for ergonomic pedicle screw fixation.IEEE Robot Autom Lett2020;5:2554-61

[22]

Huang J,Cheng Z.AOSRV: development and preliminary performance assessment of a new robotic system for autonomous percutaneous vertebroplasty.Int J Med Robot2022;18:e2456

[23]

Li Z,Song X.Accuracy evaluation of a novel spinal robotic system for autonomous laminectomy in thoracic and lumbar vertebrae: a cadaveric study.J Bone Joint Surg Am2023;105:943-50

[24]

Li K,Wang J,Liu L.Image-guided navigation of a robotic ultrasound probe for autonomous spinal sonography using a shadow-aware dual-agent framework.IEEE Trans Med Robot Bionics2022;4:130-44

[25]

Šuligoj F,Šekoranja B,Švaco M.Influence of the localization strategy on the accuracy of a neurosurgical robot system.TFAMENA2018;42:27-38

[26]

Iovene E,Iordache AV.Towards exoscope automation in neurosurgery: a markerless visual-servoing approach.IEEE Trans Med Robot Bionics2023;5:411-20

[27]

Kaushik A,Bhutani G.Autonomous neuro-registration for robot-based neurosurgery.Int J Comput Assist Radiol Surg2018;13:1807-17

[28]

D'Souza M,Feng A,Ho AL.Robotic-assisted spine surgery: history, efficacy, cost, and future trends.Robot Surg2019;6:9-23 PMCID:PMC6844237

[29]

Molteni G,Presutti L.Transoral robotic-assisted surgery for the approach to anterior cervical spine lesions.Eur Arch Otorhinolaryngol2017;274:4011-6

[30]

Perez-Cruet MJ,Hussain NS,Lin J.Use of the da Vinci minimally invasive robotic system for resection of a complicated paraspinal schwannoma with thoracic extension: case report.Neurosurgery2012;71:209-14

[31]

Sadagopan NS,Jun C,Wolinsky JP.Robotic resection of a sciatic notch lipoma using the DaVinci Surgical System: 2-dimensional operative video.Oper Neurosurg2024;27:381-2

[32]

Medtronic. MazorTM robotic guidance platform. Available from: https://www.medtronic.com/en-us/healthcare-professionals/products/surgical-robotics/robotic-systems/mazor-robotic-guidance-system.html. [Last accessed on 5 Nov 2024]

[33]

Lieberman IH,Hesselbacher S.Robotic-assisted pedicle screw placement during spine surgery.JBJS Essent Surg Tech2020;10:e0020 PMCID:PMC7478327

[34]

Chenin L,Fichten A,Lefranc M.Evaluation of screw placement accuracy in circumferential lumbar arthrodesis using robotic assistance and intraoperative flat-panel computed tomography.World Neurosurg2017;105:86-94

[35]

Lefranc M.Evaluation of the ROSA™ Spine robot for minimally invasive surgical procedures.Expert Rev Med Devices2016;13:899-906

[36]

Jiang B,Zygourakis CC.Pedicle screw accuracy assessment in ExcelsiusGPS® robotic spine surgery: evaluation of deviation from pre-planned trajectory.Chin Neurosurg J2018;4:23 PMCID:PMC7398380

[37]

Lee NJ,Boddapati V.P16. Is there a difference in screw accuracy, robot time per screw, robot abandonment, and radiation exposure between the Mazor X and the renaissance? A propensity-matched analysis of 1,179 robot-assisted screws.Spine J2021;21:S147-8

[38]

BÄcker HC,Perka C.Surgeons’ learning curve of renaissance robotic surgical system.Int J Spine Surg2020;14:818-23 PMCID:PMC7671434

[39]

Alluri RK,Sivaganesan A,Lebl DR.Overview of robotic technology in spine surgery.HSS J2021;17:308-16 PMCID:PMC8436343

[40]

Devito DP,Dietl R.Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study.Spine2010;35:2109-15

[41]

Connor MJ,Ahmed HU.Autonomous surgery in the era of robotic urology: friend or foe of the future surgeon?.Nat Rev Urol2020;17:643-9

[42]

Shademan A,Opfermann JD,Krieger A.Supervised autonomous robotic soft tissue surgery.Sci Transl Med2016;8:337ra64

[43]

O’Sullivan S,Allen C.Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery.Int J Med Robot2019;15:e1968

[44]

Bhandari M,Reddiboina M.Artificial intelligence and robotic surgery: current perspective and future directions.Curr Opin Urol2020;30:48-54

[45]

Moustris GP,Deliparaschos KM.Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature.Int J Med Robot2011;7:375-92

[46]

Attanasio A,De Momi E,Valdastri P.Autonomy in surgical robotics.Annu Rev Control Robot Auton Syst2021;4:651-79

[47]

Lauer M,Solano M.FDA device regulation.Mo Med2017;114:283-8 PMCID:PMC6140070

[48]

Gkegkes ID,Iavazzo C.Robotics in general surgery: a systematic cost assessment.J Minim Access Surg2017;13:243-55 PMCID:PMC5607789

[49]

Hashimoto DA,Rus D.Artificial intelligence in surgery: promises and perils.Ann Surg2018;268:70-6 PMCID:PMC5995666

PDF

225

Accesses

0

Citation

Detail

Sections
Recommended

/