“Bon mariage” of artificial intelligence and intraoperative fluorescence imaging for safer surgery

Takeaki Ishizawa

Artificial Intelligence Surgery ›› 2023, Vol. 3 ›› Issue (3) : 163 -5.

PDF
Artificial Intelligence Surgery ›› 2023, Vol. 3 ›› Issue (3) :163 -5. DOI: 10.20517/ais.2023.25
Editorial

“Bon mariage” of artificial intelligence and intraoperative fluorescence imaging for safer surgery

Author information +
History +
PDF

Cite this article

Download citation ▾
Takeaki Ishizawa. “Bon mariage” of artificial intelligence and intraoperative fluorescence imaging for safer surgery. Artificial Intelligence Surgery, 2023, 3(3): 163-5 DOI:10.20517/ais.2023.25

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ishizawa T,Muehrcke D.Assessing the development status of intraoperative fluorescence imaging for perfusion assessments, using the IDEAL framework.BMJ Surg Interv Health Technol2021;3:e000088 PMCID:PMC8749280

[2]

Ishizawa T,Stassen L.Assessing the development status of intraoperative fluorescence imaging for anatomy visualisation, using the IDEAL framework.BMJ Surg Interv Health Technol2022;4:e000156 PMCID:PMC9639126

[3]

Ishizawa T,Kokudo N.Fluorescent cholangiography using indocyanine green for laparoscopic cholecystectomy: an initial experience.Arch Surg2009;144:381-2

[4]

Brunt LM,Telem DA.Safe cholecystectomy multi-society practice guideline and state of the art consensus conference on prevention of bile duct injury during cholecystectomy.Ann Surg2020;272:3-23

[5]

Dip F,DeBoer E.Use of fluorescence imaging and indocyanine green during laparoscopic cholecystectomy: results of an international Delphi survey.Surgery2022;172:S21-8

[6]

Terasawa M,Mise Y.Applications of fusion-fluorescence imaging using indocyanine green in laparoscopic hepatectomy.Surg Endosc2017;31:5111-8

[7]

Oppermann C,Yikilmaz H,Eriksen T.Continuous organ perfusion monitoring using indocyanine green in a piglet model.Surg Endosc2023;37:1601-10

[8]

Barberio M,Benedicenti S.Intraoperative bowel perfusion quantification with hyperspectral imaging: a guidance tool for precision colorectal surgery.Surg Endosc2022;36:8520-32

[9]

Ishizawa T,Shibahara J.Real-time identification of liver cancers by using indocyanine green fluorescent imaging.Cancer2009;115:2491-504

[10]

Ishizawa T,Urano Y.Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma.Ann Surg Oncol2014;21:440-8

[11]

Shinkawa H.Artificial intelligence-based technology for enhancing the quality of simulation, navigation, and outcome prediction for hepatectomy.Art Int Surg2023;3:69-79

[12]

McGivern KG,Knight SR.Applying artificial intelligence to big data in hepatopancreatic and biliary surgery: a scoping review.Art Int Surg2023;3:27-47

[13]

Kinoshita M,Matsumoto T.Deep learning model based on contrast-enhanced computed tomography imaging to predict postoperative early recurrence after the curative resection of a solitary hepatocellular carcinoma.Cancers2023;15:2140 PMCID:PMC10092973

PDF

28

Accesses

0

Citation

Detail

Sections
Recommended

/