Decoding regulatory programs underlying placode and dermal condensate cell fate commitment during hair follicle induction via single-cell multi-omics analysis

Fang Li , Minghao Li , Tongtong Zhang , Menghua Sui , Hasan Khatib , Xin Wang

Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (3) : 297 -315.

PDF
Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (3) : 297 -315. DOI: 10.1002/aro2.99
ARTICLE

Decoding regulatory programs underlying placode and dermal condensate cell fate commitment during hair follicle induction via single-cell multi-omics analysis

Author information +
History +
PDF

Abstract

Understanding differences in chromatin state and changes in gene regulatory landscape of placode (Pc) and dermal condensate are crucial for decoding hair follicle (HF) morphogenesis programs. To identify cell-type-specific chromatin accessibility patterns in the developing HF, we integrated chromatin accessibility and transcriptome profiles at single-cell resolution during the murine HF induction stage. We applied unbiased analyses to identify seven major HF cell types and reclustered dermal (Der) and epithelium (Epi) subtypes to trace their cell fate specification. Our analysis showed that gene regulation in Der and Epi lineages is largely determined by cis-regulatory elements that direct gene expression in response to specific developmental cues. The chromatin accessibility of Twist2, Enpp2, Dkk1, and Sox2 varied from fibroblasts (Fb) to pre-DC lineage, while that of Edar, Lhx2, and Wnt10b varied from Epi to Pc lineage. Cell-type-specific enrichment of transcription factor binding motifs implicated Twist2 and Nfatc4 as key regulators in Fb to pre-DC fate specification, and Fos, Bach1, and Klf1 in Epi to Pc niche fate specification. Additionally, alignment of cell-type-specific peaks to super-enhancer databases identified key regulatory elements in both lineages. We identified and validated the critical cis-regulatory elements in pre-DC and Pc fate specifications through embryonic dorsal skin culture in vitro, suggesting that these elements may regulate critical genes essential for HF induction. Overall, our results provide a foundation for a comprehensive analysis of gene regulatory programs that initiate HF development, offering insights into the molecular mechanism of HF morphogenesis and clinical treatments of alopecia by skin grafts.

Keywords

dermal condensate / epigenomics / gene regulation / hair follicle / placode

Cite this article

Download citation ▾
Fang Li, Minghao Li, Tongtong Zhang, Menghua Sui, Hasan Khatib, Xin Wang. Decoding regulatory programs underlying placode and dermal condensate cell fate commitment during hair follicle induction via single-cell multi-omics analysis. Animal Research and One Health, 2025, 3(3): 297-315 DOI:10.1002/aro2.99

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Clavel, C., Grisanti, L., Zemla, R., Rezza, A., Barros, R., Sennett, R., Mazloom, A., Chung, C.Y., Cai, X., Cai, C.L., Pevny, L., Nicolis, S., Ma'ayan, A., & Rendl, M. (2012). Sox2 in the dermal papilla niche controls hair growth by fine-tuning BMP signaling in differentiating hair shaft progenitors. Developmental Cell, 23(5), 981-994. https://doi.org/10.1016/j.devcel.2012.10.013

[2]

Morgan, B.A. (2014). The dermal papilla: An instructive niche for epithelial stem and progenitor cells in development and regeneration of the hair follicle. Cold Spring Harbor Perspectives in Medicine, 4(7), a015180. https://doi.org/10.1101/cshperspect.a015180

[3]

Yang, H., Adam, R.C., Ge, Y., Hua, Z.L., & Fuchs, E. (2017). Epithelial-mesenchymal micro-niches govern stem cell lineage choices. Cell, 169(3), 483-496.e413. https://doi.org/10.1016/j.cell.2017.03.038

[4]

Blanpain, C., Lowry, W.E., Geoghegan, A., Polak, L., & Fuchs, E. (2004). Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell, 118(5), 635-648. https://doi.org/10.1016/j.cell.2004.08.012

[5]

Cotsarelis, G., Sun, T.T., & Lavker, R.M. (1990). Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell, 61(7), 1329-1337. https://doi.org/10.1016/0092-8674(90)90696-c

[6]

Schmidt-Ullrich, R., & Paus, R. (2005). Molecular principles of hair follicle induction and morphogenesis. BioEssays, 27(3), 247-261. https://doi.org/10.1002/bies.20184

[7]

Zhang, Y., Tomann, P., Andl, T., Gallant, N.M., Huelsken, J., Jerchow, B., Birchmeier, W., Paus, R., Piccolo, S., Mikkola, M.L., Morrisey, E.E., Overbeek, P.A., Scheidereit, C., Millar, S.E., & Schmidt-Ullrich, R. (2009). Reciprocal requirements for EDA/EDAR/NF-kappaB and Wnt/beta-catenin signaling pathways in hair follicle induction. Developmental Cell, 17(1), 49-61. https://doi.org/10.1016/j.devcel.2009.05.011

[8]

Gupta, K., Levinsohn, J., Linderman, G., Chen, D., Sun, T.Y., Dong, D., Taketo, M.M., Bosenberg, M., Kluger, Y., Choate, K., & Myung, P. (2019). Single-cell analysis reveals a hair follicle dermal niche molecular differentiation trajectory that begins prior to morphogenesis. Developmental Cell, 48(1), 17-31.e16. https://doi.org/10.1016/j.devcel.2018.11.032

[9]

Hardy, M.H. (1992). The secret life of the hair follicle. Trends in Genetics, 8(2), 55-61. https://doi.org/10.1016/0168-9525(92)90350-d

[10]

Wang, X., Tredget, E.E., & Wu, Y. (2012). Dynamic signals for hair follicle development and regeneration. Stem Cells and Development, 21(1), 7-18. https://doi.org/10.1089/scd.2011.0230

[11]

Chen, D., Jarrell, A., Guo, C., Lang, R., & Atit, R. (2012). Dermal beta-catenin activity in response to epidermal Wnt ligands is required for fibroblast proliferation and hair follicle initiation. Development, 139(8), 1522-1533. https://doi.org/10.1242/dev.076463

[12]

Millar, S.E. (2002). Molecular mechanisms regulating hair follicle development. Journal of Investigative Dermatology, 118(2), 216-225. https://doi.org/10.1046/j.0022-202x.2001.01670.x

[13]

Patel, P.M., Jones, V.A., Kridin, K., & Amber, K.T. (2021). The role of dipeptidyl peptidase-4 in cutaneous disease. Experimental Dermatology, 30(3), 304-318. https://doi.org/10.1111/exd.14228

[14]

Biggs, L.C., Makela, O.J., Myllymaki, S.M., Das Roy, R., Narhi, K., Pispa, J., Mustonen, T., & Mikkola, M.L. (2018). Hair follicle dermal condensation forms via Fgf20 primed cell cycle exit, cell motility, and aggregation. Elife, 7. https://doi.org/10.7554/eLife.36468

[15]

Wang, Y., Jiang, Y., Ni, G., Li, S., Balderson, B., Zou, Q., Liu, H., Sun, J., & Ding, X. (2024). Integrating single-cell and spatial transcriptomics reveals heterogeneity of early pig skin development and a subpopulation with hair placode formation. Advanced Science, 11(20), e2306703. https://doi.org/10.1002/advs.202306703

[16]

Ahtiainen, L., Lefebvre, S., Lindfors, P.H., Renvoise, E., Shirokova, V., Vartiainen, M.K., Thesleff, I., & Mikkola, M. (2014). Directional cell migration, but not proliferation, drives hair placode morphogenesis. Developmental Cell, 28(5), 588-602. https://doi.org/10.1016/j.devcel.2014.02.003

[17]

Glover, J.D., Wells, K.L., Matthaus, F., Painter, K.J., Ho, W., Riddell, J., Johansson, J.A., Ford, M.J., Jahoda, C. A.B., Klika, V., Mort, R.L., & Headon, D.J. (2017). Hierarchical patterning modes orchestrate hair follicle morphogenesis. PLoS Biology, 15(7), e2002117. https://doi.org/10.1371/journal.pbio.2002117

[18]

Handjiski, B.K., Eichmuller, S., Hofmann, U., Czarnetzki, B.M., & Paus, R. (1994). Alkaline phosphatase activity and localization during the murine hair cycle. British Journal of Dermatology, 131(3), 303-310. https://doi.org/10.1111/j.1365-2133.1994.tb08515.x

[19]

Tomann, P., Paus, R., Millar, S.E., Scheidereit, C., & Schmidt-Ullrich, R. (2016). Lhx2 is a direct NF-kappaB target gene that promotes primary hair follicle placode down-growth. Development, 143(9), 1512-1522. https://doi.org/10.1242/dev.130898

[20]

Sennett, R., Wang, Z., Rezza, A., Grisanti, L., Roitershtein, N., Sicchio, C., Mok, K., Heitman, N., Clavel, C., Ma’ayan, A., & Rendl, M. (2015). An integrated transcriptome atlas of embryonic hair follicle progenitors, their niche, and the developing skin. Developmental Cell, 34(5), 577-591. https://doi.org/10.1016/j.devcel.2015.06.023

[21]

Rhee, H., Polak, L., & Fuchs, E. (2006). Lhx2 maintains stem cell character in hair follicles. Science, 312(5782), 1946-1949. https://doi.org/10.1126/science.1128004

[22]

Morita, R., Sanzen, N., Sasaki, H., Hayashi, T., Umeda, M., Yoshimura, M., Yamamoto, T., Shibata, T., Abe, T., Kiyonari, H., Furuta, Y., Nikaido, I., & Fujiwara, H. (2021). Tracing the origin of hair follicle stem cells. Nature, 594(7864), 547-552. https://doi.org/10.1038/s41586-021-03638-5

[23]

Luo, C., Keown, C.L., Kurihara, L., Zhou, J., He, Y., Li, J., Castanon, R., Lucero, J., Nery, J.R., Sandoval, J.P., Bui, B., Sejnowski, T.J., Harkins, T.T., Mukamel, E.A., Behrens, M.M., & Ecker, J.R. (2017). Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science, 357(6351), 600-604. https://doi.org/10.1126/science.aan3351

[24]

Gawel, D.R., Serra-Musach, J., Lilja, S., Aagesen, J., Arenas, A., Asking, B., Bengnér, M., Björkander, J., Biggs, S., Ernerudh, J., Hjortswang, H., Karlsson, J.E., Köpsen, M., Lee, E.J., Lentini, A., Li, X., Magnusson, M., Martínez-Enguita, D., Matussek, A., & Benson, M. (2019). A validated single-cell-based strategy to identify diagnostic and therapeutic targets in complex diseases. Genome Medicine, 11(1), 47. https://doi.org/10.1186/s13073-019-0657-3

[25]

Mok, K.W., Saxena, N., Heitman, N., Grisanti, L., Srivastava, D., Muraro, M.J., Jacob, T., Sennett, R., Wang, Z., Su, Y., Yang, L.M., Ma’ayan, A., Ornitz, D.M., Kasper, M., & Rendl, M. (2019). Dermal condensate niche fate specification occurs prior to formation and is placode progenitor dependent. Developmental Cell, 48(1), 32-48.e35. https://doi.org/10.1016/j.devcel.2018.11.034

[26]

Laurikkala, J., Pispa, J., Jung, H.S., Nieminen, P., Mikkola, M., Wang, X., Saarialho-Kere, U., Galceran, J., Grosschedl, R., & Thesleff, I. (2002). Regulation of hair follicle development by the TNF signal ectodysplasin and its receptor Edar. Development, 129(10), 2541-2553. https://doi.org/10.1242/dev.129.10.2541

[27]

Sick, S., Reinker, S., Timmer, J., & Schlake, T. (2006). WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science, 314(5804), 1447-1450. https://doi.org/10.1126/science.1130088

[28]

Mailleux, A.A., Spencer-Dene, B., Dillon, C., Ndiaye, D., Savona-Baron, C., Itoh, N., Kato, S., Dickson, C., Thiery, J.P., & Bellusci, S. (2002). Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development, 129(1), 53-60. https://doi.org/10.1242/dev.129.1.53

[29]

Ernst, J., & Kellis, M. (2017). Chromatin-state discovery and genome annotation with ChromHMM. Nature Protocols, 12(12), 2478-2492. https://doi.org/10.1038/nprot.2017.124

[30]

You, M., Chen, L., Zhang, D., Zhao, P., Chen, Z., Qin, E.Q., Gao, Y., Davis, M.M., & Yang, P. (2021). Single-cell epigenomic landscape of peripheral immune cells reveals establishment of trained immunity in individuals convalescing from COVID-19. Nature Cell Biology, 23(6), 620-630. https://doi.org/10.1038/s41556-021-00690-1

[31]

Nikolic, A., Singhal, D., Ellestad, K., Johnston, M., Shen, Y., Gillmor, A., Morrissy, S., Cairncross, J.G., Jones, S., Lupien, M., Chan, J.A., Neri, P., Bahlis, N., & Gallo, M. (2021). Copy-scAT: Deconvoluting single-cell chromatin accessibility of genetic subclones in cancer. Science Advances, 7(42), eabg6045. https://doi.org/10.1126/sciadv.abg6045

[32]

Pattabiraman, K., Golonzhka, O., Lindtner, S., Nord, A.S., Taher, L., Hoch, R., Silberberg, S., Zhang, D., Chen, B., Zeng, H., Pennacchio, L., Puelles, L., Visel, A., & Rubenstein, J. (2014). Transcriptional regulation of enhancers active in protodomains of the developing cerebral cortex. Neuron, 82(5), 989-1003. https://doi.org/10.1016/j.neuron.2014.04.014

[33]

Visel, A., Taher, L., Girgis, H., May, D., Golonzhka, O., Hoch, R.V., McKinsey, G., Pattabiraman, K., Silberberg, S., Blow, M., Hansen, D., Nord, A., Akiyama, J., Holt, A., Hosseini, R., Phouanenavong, S., Plajzer-Frick, I., Shoukry, M., Afzal, V., & Rubenstein, J. (2013). A high-resolution enhancer atlas of the developing telencephalon. Cell, 152(4), 895-908. https://doi.org/10.1016/j.cell.2012.12.041

[34]

Cai, S., Hu, B., Wang, X., Liu, T., Lin, Z., Tong, X., Xu, R., Chen, M., Duo, T., Zhu, Q., Liang, Z., Li, E., Chen, Y., Li, J., & Mo, D. (2023). Integrative single-cell RNA-seq and ATAC-seq analysis of myogenic differentiation in pig. BMC Biology, 21(1), 19. https://doi.org/10.1186/s12915-023-01519-z

[35]

de la Torre-Ubieta, L., Stein, J.L., Won, H., Opland, C.K., Liang, D., Lu, D., & Geschwind, D.H. (2018). The dynamic landscape of open chromatin during human cortical neurogenesis. Cell, 172(1-2), 289-304.e218. https://doi.org/10.1016/j.cell.2017.12.014

[36]

Amiri, A., Coppola, G., Scuderi, S., Wu, F., Roychowdhury, T., Liu, F., Pochareddy, S., Shin, Y., Safi, A., Song, L., Zhu, Y., Sousa, A. M.M., Gerstein, M., Crawford, G.E., Sestan, N., Abyzov, A., Vaccarino, F.M., Akbarian, S., An, J.Y., & Zharovsky, E. (2018). Transcriptome and epigenome landscape of human cortical development modeled in organoids. Science, 362(6420), 1268. https://doi.org/10.1126/science.aat6720

[37]

Zou, D.D., Sun, Y.Z., Li, X.J., Wu, W.J., Xu, D., He, Y.T., Qi, J., Tu, Y., Tang, Y., Tu, Y.H., Wang, X.L., Lu, F.Y., Huang, L., Long, H., & He, L. (2023). Single-cell sequencing highlights heterogeneity and malignant progression in actinic keratosis and cutaneous squamous cell carcinoma. Elife, 12. https://doi.org/10.7554/eLife.85270

[38]

Thompson, S.M., Phan, Q.M., Winuthayanon, S., Driskell, I.M., & Driskell, R.R. (2022). Parallel single-cell multiomics analysis of neonatal skin reveals the transitional fibroblast states that restrict differentiation into distinct fates. Journal of Investigative Dermatology, 142(7), 1812-1823.e1813. https://doi.org/10.1016/j.jid.2021.11.032

[39]

Ge, W., Tan, S.J., Wang, S.H., Li, L., Sun, X.F., Shen, W., & Wang, X. (2020). Single-cell transcriptome profiling reveals dermal and epithelial cell fate decisions during embryonic hair follicle development. Theranostics, 10(17), 7581-7598. https://doi.org/10.7150/thno.44306

[40]

Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., Benner, C., & Chanda, S.K. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications, 10(1), 1523. https://doi.org/10.1038/s41467-019-09234-6

[41]

Braun, D.A., Street, K., Burke, K.P., Cookmeyer, D.L., Denize, T., Pedersen, C.B., Gohil, S.H., Schindler, N., Pomerance, L., Hirsch, L., Bakouny, Z., Hou, Y., Forman, J., Huang, T., Li, S., Cui, A., Keskin, D.B., Steinharter, J., Bouchard, G., & Wu, C.J. (2021). Progressive immune dysfunction with advancing disease stage in renal cell carcinoma. Cancer Cell, 39(5), 632-648.e638. https://doi.org/10.1016/j.ccell.2021.02.013

[42]

Butler, A., Hoffman, P., Smibert, P., Papalexi, E., & Satija, R. (2018). Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature Biotechnology, 36(5), 411-420. https://doi.org/10.1038/nbt.4096

[43]

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., III, Hao, Y., Stoeckius, M., Smibert, P., & Satija, R. (2019). Comprehensive integration of single-cell data. Cell, 177(7), 1888-1902.e1821. https://doi.org/10.1016/j.cell.2019.05.031

[44]

Qu, R., Gupta, K., Dong, D., Jiang, Y., Landa, B., Saez, C., Strickland, G., Levinsohn, J., Weng, P.l., Taketo, M.M., Kluger, Y., & Myung, P. (2022). Decomposing a deterministic path to mesenchymal niche formation by two intersecting morphogen gradients. Developmental Cell, 57(8), 1053-1067.e1055. https://doi.org/10.1016/j.devcel.2022.03.011

[45]

Dilliott, A.A., Sunderland, K.M., McLaughlin, P.M., Roberts, A.C., Evans, E.C., Abrahao, A., Binns, M.A., Black, S.E., Borrie, M., Casaubon, L., Dowlatshahi, D., Finger, E., Fischer, C., Frank, A., Freedman, M., Grimes, D., Hassan, A., Jog, M., Kumar, S., & Hegele, R.A. (2021). Association of apolipoprotein E variation with cognitive impairment across multiple neurodegenerative diagnoses. Neurobiology of Aging, 105, 378.e371-378.e379. https://doi.org/10.1016/j.neurobiolaging.2021.04.011

[46]

Bhat, B., Yaseen, M., Singh, A., Ahmad, S.M., & Ganai, N.A. (2021). Identification of potential key genes and pathways associated with the Pashmina fiber initiation using RNA-Seq and integrated bioinformatics analysis. Scientific Reports, 11(1), 1766. https://doi.org/10.1038/s41598-021-81471-6

[47]

Lim, J.H., Beg, M. M.A., Ahmad, K., Shaikh, S., Ahmad, S.S., Chun, H.J., Choi, D., Lee, W.J., Jin, J.O., Kim, J., Jan, A.T., Lee, E.J., & Choi, I. (2021). IgLON5 regulates the adhesion and differentiation of myoblasts. Cells, 10(2), 417. https://doi.org/10.3390/cells10020417

[48]

Vidal, V.P., Chaboissier, M.C., Lutzkendorf, S., Cotsarelis, G., Mill, P., Hui, C.C., Ortonne, N., Ortonne, J.P., & Schedl, A. (2005). Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Current Biology, 15(15), 1340-1351. https://doi.org/10.1016/j.cub.2005.06.064

[49]

Schep, A.N., Wu, B., Buenrostro, J.D., & Greenleaf, W.J. (2017). chromVAR: Inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nature Methods, 14(10), 975-978. https://doi.org/10.1038/nmeth.4401

[50]

Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N.J., Livak, K.J., Mikkelsen, T.S., & Rinn, J.L. (2014). The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature Biotechnology, 32(4), 381-386. https://doi.org/10.1038/nbt.2859

[51]

Muto, Y., Wilson, P.C., Ledru, N., Wu, H., Dimke, H., Waikar, S.S., & Humphreys, B.D. (2021). Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nature Communications, 12(1), 2190. https://doi.org/10.1038/s41467-021-22368-w

[52]

Aragona, M., Sifrim, A., Malfait, M., Song, Y., Van Herck, J., Dekoninck, S., Gargouri, S., Lapouge, G., Swedlund, B., Dubois, C., Baatsen, P., Vints, K., Han, S., Tissir, F., Voet, T., Simons, B.D., & Blanpain, C. (2020). Mechanisms of stretch-mediated skin expansion at single-cell resolution. Nature, 584(7820), 268-273. https://doi.org/10.1038/s41586-020-2555-7

[53]

Sato, M., Matsumoto, M., Saiki, Y., Alam, M., Nishizawa, H., Rokugo, M., Brydun, A., Yamada, S., Kaneko, M.K., Funayama, R., Ito, M., Kato, Y., Nakayama, K., Unno, M., & Igarashi, K. (2020). BACH1 promotes pancreatic cancer metastasis by repressing epithelial genes and enhancing epithelial-mesenchymal transition. Cancer Research, 80(6), 1279-1292. https://doi.org/10.1158/0008-5472.CAN-18-4099

[54]

Shi, G., & Yang, F. (2021). Kruppel-like factor 1 (KLF1) promoted the proliferation, migration and invasion of human lens epithelial cells by enhancing the expression of zinc finger and BTB domain containing 7A (ZBTB7A) and activating Wnt/beta-catenin pathway. Bioengineered, 12(1), 4374-4384. https://doi.org/10.1080/21655979.2021.1953901

[55]

Adam, R.C., Yang, H., Rockowitz, S., Larsen, S.B., Nikolova, M., Oristian, D.S., Polak, L., Kadaja, M., Asare, A., Zheng, D., & Fuchs, E. (2015). Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice. Nature, 521(7552), 366-370. https://doi.org/10.1038/nature14289

[56]

Saxena, N., Mok, K.W., & Rendl, M. (2019). An updated classification of hair follicle morphogenesis. Experimental Dermatology, 28(4), 332-344. https://doi.org/10.1111/exd.13913

[57]

Biernaskie, J., Paris, M., Morozova, O., Fagan, B.M., Marra, M., Pevny, L., & Miller, F.D. (2009). SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells. Cell Stem Cell, 5(6), 610-623. https://doi.org/10.1016/j.stem.2009.10.019

[58]

Grisanti, L., Clavel, C., Cai, X., Rezza, A., Tsai, S.Y., Sennett, R., Mumau, M., & Rendl, M. (2013). Tbx18 targets dermal condensates for labeling, isolation, and gene ablation during embryonic hair follicle formation. Journal of Investigative Dermatology, 133(2), 344-353. https://doi.org/10.1038/jid.2012.329

[59]

Takaya, K., Sunohara, A., Sakai, S., Aramaki-Hattori, N., Okabe, K., & Kishi, K. (2024). Twist2 contributes to skin regeneration and hair follicle formation in mouse fetuses. Scientific Reports, 14(1), 10854. https://doi.org/10.1038/s41598-024-60684-5

[60]

Sosic, D., Richardson, J.A., Yu, K., Ornitz, D.M., & Olson, E.N. (2003). Twist regulates cytokine gene expression through a negative feedback loop that represses NF-kappaB activity. Cell, 112(2), 169-180. https://doi.org/10.1016/s0092-8674(03)00002-3

[61]

Villeneuve, C., Hashmi, A., Ylivinkka, I., Lawson-Keister, E., Miroshnikova, Y.A., Perez-Gonzalez, C., Myllymäki, S.M., Bertillot, F., Yadav, B., Zhang, T., Matic Vignjevic, D., Mikkola, M.L., Manning, M.L., & Wickström, S.A. (2024). Mechanical forces across compartments coordinate cell shape and fate transitions to generate tissue architecture. Nature Cell Biology, 26(2), 207-218. https://doi.org/10.1038/s41556-023-01332-4

[62]

Grisanti, L., Rezza, A., Clavel, C., Sennett, R., & Rendl, M. (2013). Enpp2/Autotaxin in dermal papilla precursors is dispensable for hair follicle morphogenesis. Journal of Investigative Dermatology, 133(10), 2332-2339. https://doi.org/10.1038/jid.2013.140

[63]

Tokonzaba, E., Chen, J., Cheng, X., Den, Z., Ganeshan, R., Muller, E.J., & Koch, P.J. (2013). Plakoglobin as a regulator of desmocollin gene expression. Journal of Investigative Dermatology, 133(12), 2732-2740. https://doi.org/10.1038/jid.2013.220

[64]

Nair, M., Teng, A., Bilanchone, V., Agrawal, A., Li, B., & Dai, X. (2006). Ovol1 regulates the growth arrest of embryonic epidermal progenitor cells and represses c-myc transcription. Journal of Cell Biology, 173(2), 253-264. https://doi.org/10.1083/jcb.200508196

[65]

Esibizione, D., Cui, C.Y., & Schlessinger, D. (2008). Candidate EDA targets revealed by expression profiling of primary keratinocytes from Tabby mutant mice. Gene, 427(1-2), 42-46. https://doi.org/10.1016/j.gene.2008.09.014

RIGHTS & PERMISSIONS

2024 The Author(s). Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

35

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/