Plants, plant-derived compounds, probiotics, and postbiotics as green agents to fight against poultry coccidiosis: A review

Pan Chen , Kaili Liu , Taojing Yue , Yanan Lu , Senyang Li , Fuchun Jian , Shucheng Huang

Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (3) : 240 -260.

PDF
Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (3) : 240 -260. DOI: 10.1002/aro2.96
REVIEW

Plants, plant-derived compounds, probiotics, and postbiotics as green agents to fight against poultry coccidiosis: A review

Author information +
History +
PDF

Abstract

The intestinal tract is the main place for animals to digest food and absorb nutrients, which also serves as the first line of defense against pathogens that invade the internal environment. Therefore, normal intestinal structure and function are essential for animal health. Poultry coccidiosis is an intestinal disease primarily caused by the parasitization of intestinal epithelial cells by protozoa of the genus Eimeria. The occurrence of coccidiosis not only compromises the intestinal integrity of poultry but also increases their disease susceptibility, thus posing a serious threat to the overall health and productivity of poultry. Nowadays, the primary methods for controlling and preventing coccidiosis in poultry are anticoccidial drugs or live oocyst vaccines. However, the use of the former may be associated with problems of resistance and drug residues, while the use of the latter may cause intestinal damage and significantly increase farming costs. For these reasons, it is critical to investigate green, safe, and cost-effective natural alternative strategies such as phytochemicals and probiotics for controlling coccidiosis as well as mitigating the deleterious effects of coccidial infections in production. In this review, we aim to summarize the role, mechanisms, and therapeutic potential of natural products in the treatment of coccidiosis to lay a theoretical foundation for effective coccidiosis control.

Keywords

anti-coccidial drugs / Eimeria / gut microbiota / intestinal health / parasitosis / plant extracts / probiotics

Cite this article

Download citation ▾
Pan Chen, Kaili Liu, Taojing Yue, Yanan Lu, Senyang Li, Fuchun Jian, Shucheng Huang. Plants, plant-derived compounds, probiotics, and postbiotics as green agents to fight against poultry coccidiosis: A review. Animal Research and One Health, 2025, 3(3): 240-260 DOI:10.1002/aro2.96

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wickramasuriya, S.S., Park, I., Lee, K., Lee, Y., Kim, W.H., Nam, H., & Lillehoj, H.S. (2022). Role of physiology, immunity, microbiota, and infectious diseases in the gut health of poultry. Vaccines, 10(2), 172. https://doi.org/10.3390/vaccines10020172

[2]

Nii, T. (2022). Relationship between mucosal barrier function of the oviduct and intestine in the productivity of laying hens. The Journal of Poultry Science, 59(2), 105-113. https://doi.org/10.2141/jpsa.0210090

[3]

Nii, T., Isobe, N., & Yoshimura, Y. (2014). Effects of avian infectious bronchitis virus antigen on eggshell formation and immunoreaction in hen oviduct. Theriogenology, 81(8), 1129-1138. https://doi.org/10.1016/j.theriogenology.2014.02.002

[4]

Burrell, A., Tomley, F.M., Vaughan, S., & Marugan-Hernandez, V. (2020). Life cycle stages, specific organelles and invasion mechanisms of Eimeria species. Parasitology, 147(3), 263-278. https://doi.org/10.1017/S0031182019001562

[5]

Liu, Q., Liu, X., Zhao, X., Zhu, X.-Q., & Suo, X. (2023). Live attenuated anticoccidial vaccines for chickens. Trends in Parasitology, 39(12), 1087-1099. https://doi.org/10.1016/j.pt.2023.09.002

[6]

Xu, T.T., Chen, P., Zhang, C.D., Shaukat, A., Lin, L.X., Yue, K., Ding, W.L., Tong, X., Liu, K.L., He, Y.F., Xie, J.F., Liu, F., Zhang, C., Zhang, H.Y., & Huang, S.C. (2023). Gut microbiome dysregulation drives bone damage in broiler tibial dyschondroplasia by disrupting glucose homeostasis. NPJ Biofilms Microbiomes, 9(1), 1. https://doi.org/10.1038/s41522-022-00360-6

[7]

Sánchez, B., Delgado, S., Blanco-Míguez, A., Lourenço, A., Gueimonde, M., & Margolles, A. (2017). Probiotics, gut microbiota, and their influence on host health and disease. Molecular Nutrition & Food Research, 61(1), 1600240. https://doi.org/10.1002/mnfr.201600240

[8]

Zhang, H., Ding, X., Bai, S., Zeng, Q., Zhang, K., Mao, X., Chu, L., Hou, D., Xuan, Y., & Wang, J. (2022). Alleviating effect of dietary supplementation of benzoic acid, Enterococcus faecium and essential oil complex on coccidia and Clostridium perfringens challenge in laying hens. Poultry Science, 101(4), 101720. https://doi.org/10.1016/j.psj.2022.101720

[9]

Liu, H., Chen, P., Lv, X., Zhou, Y., Li, X., Ma, S., & Zhao, J. (2022). Effects of chlorogenic acid on performance, anticoccidial indicators, immunity, antioxidant status, and intestinal barrier function in coccidia-infected broilers. Animals, 12(8), 963. https://doi.org/10.3390/ani12080963

[10]

Zhang, Y., Duan, B.T., Zhao, Y.J., Cui, K.L., Xu, T., Zhang, X.S., Lv, X.L., Guo, L.L., Zheng, M.X., & Bai, R. (2023). Pathogenic mechanism of Eimeria tenella autophagy activation of chicken embryo cecal epithelial cells induced by Eimeria tenella. Poultry Science, 102(4), 102535. https://doi.org/10.1016/j.psj.2023.102535

[11]

Lu, C., Yan, Y., Jian, F., & Ning, C. (2021). Coccidia-microbiota interactions and their effects on the host. Frontiers in Cellular and Infection Microbiology, 11, 751481. https://doi.org/10.3389/fcimb.2021.751481

[12]

Blake, D.P., Knox, J., Dehaeck, B., Huntington, B., Rathinam, T., Ravipati, V., Ayoade, S., Gilbert, W., Adebambo, A.O., Jatau, I.D., Raman, M., Parker, D., Rushton, J., & Tomley, F.M. (2020). Re-calculating the cost of coccidiosis in chickens. Veterinary Research, 51(1), 115. https://doi.org/10.1186/s13567-020-00837-2

[13]

Blake, D.P., & Tomley, F.M. (2014). Securing poultry production from the ever-present Eimeria challenge. Trends in Parasitology, 30(1), 12-19. https://doi.org/10.1016/j.pt.2013.10.003

[14]

Elmahallawy, E.K., Fehaid, A., El-Shewehy, D. M.M., Ramez, A.M., Alkhaldi, A. A.M., Mady, R., Nasr, N.E., Arafat, N., Hassanen, E. A.A., Alsharif, K.F., & Abdo, W. (2021). S-methylcysteine ameliorates the intestinal damage induced by Eimeria tenella infection via targeting oxidative stress and inflammatory modulators. Frontiers in Veterinary Science, 8, 754991. https://doi.org/10.3389/fvets.2021.754991

[15]

El-Shall, N.A., Abd El-Hack, M.E., Albaqami, N.M., Khafaga, A.F., Taha, A.E., Swelum, A.A., El-Saadony, M.T., Salem, H.M., El-Tahan, A.M., AbuQamar, S.F., El-Tarabily, K.A., & Elbestawy, A.R. (2022). Phytochemical control of poultry coccidiosis: A review. Poultry Science, 101(1), 101542. https://doi.org/10.1016/j.psj.2021.101542

[16]

Odden, A., Enemark, H.L., Ruiz, A., Robertson, L.J., Ersdal, C., Nes, S.K., Tømmerberg, V., & Stuen, S. (2018). Controlled efficacy trial confirming toltrazuril resistance in a field isolate of ovine Eimeria spp. Parasites & Vectors, 11(1), 394. https://doi.org/10.1186/s13071-018-2976-4

[17]

Quiroz-Castañeda, R.E., & Dantán-González, E. (2015). Control of avian coccidiosis: Future and present natural alternatives. BioMed Research International, 2015, 430610-430611. https://doi.org/10.1155/2015/430610

[18]

Vieira, A.M., Soratto, T. A.T., Cardinal, K.M., Wagner, G., Hauptli, L., Lima, A. L.F., Dahlke, F., Peres Netto, D., Moraes, P.O., & Ribeiro, A. M.L. (2020). Modulation of the intestinal microbiota of broilers supplemented with monensin or functional oils in response to challenge by Eimeria spp. PLoS One, 15(8), e0237118. https://doi.org/10.1371/journal.pone.0237118

[19]

Allen, P.C., & Fetterer, R.H. (2002). Recent advances in biology and immunobiology of Eimeria species and in diagnosis and control of infection with these coccidian parasites of poultry. Clinical Microbiology Reviews, 15(1), 58-65. https://doi.org/10.1128/CMR.15.1.58-65.2002

[20]

Zaheer, T., Abbas, R.Z., Imran, M., Abbas, A., Butt, A., Aslam, S., & Ahmad, J. (2022). Vaccines against chicken coccidiosis with particular reference to previous decade: Progress, challenges, and opportunities. Parasitology Research, 121(10), 2749-2763. https://doi.org/10.1007/s00436-022-07612-6

[21]

Collier, C.T., Hofacre, C.L., Payne, A.M., Anderson, D.B., Kaiser, P., Mackie, R.I., & Gaskins, H.R. (2008). Coccidia-induced mucogenesis promotes the onset of necrotic enteritis by supporting Clostridium perfringens growth. Veterinary Immunology and Immunopathology, 122(1-2), 104-115. https://doi.org/10.1016/j.vetimm.2007.10.014

[22]

Huang, G., Tang, X., Bi, F., Hao, Z., Han, Z., Suo, J., Zhang, S., Wang, S., Duan, C., Yu, Z., Yu, F., Yu, Y., Lv, Y., Suo, X., & Liu, X. (2018). Eimeria tenella infection perturbs the chicken gut microbiota from the onset of oocyst shedding. Veterinary Parasitology, 258, 30-37. https://doi.org/10.1016/j.vetpar.2018.06.005

[23]

Kogut, M.H., Fukata, T., Tellez, G., Hargis, B.M., Corrier, D.E., & DeLoach, J.R. (1994). Effect of Eimeria tenella infection on resistance to Salmonella typhimurium colonization in broiler chicks inoculated with anaerobic cecal flora and fed dietary lactose. Avian Diseases, 38(1), 59-64. https://doi.org/10.1093/jas/skac360

[24]

Chen, P., Ding, W.L., Xu, B.W., Rehman, M.U., Liu, K.L., He, Y.F., Li, S.Y., Jian, F.C., & Huang, S. (2024). Aflatoxin B1 as a complicit in intestinal damage caused by Eimeria ovinoidalis in lambs: Novel insights to reveal parasite-gut battle. The Science of the Total Environment, 947, 174539. https://doi.org/10.1016/j.scitotenv.2024.174539

[25]

Wang, Y., Lv, X., Li, X., Zhao, J., Zhang, K., Hao, X., Liu, K., & Liu, H. (2021). Protective effect of Lactobacillus plantarum P8 on growth performance, intestinal health, and microbiota in Eimeria-infected broilers. Frontiers in Microbiology, 12, 705758. https://doi.org/10.3389/fmicb.2021.705758

[26]

Jiao, J., Yang, Y., Liu, M., Li, J., Cui, Y., Yin, S., & Tao, J. (2018). Artemisinin and Artemisia annua leaves alleviate Eimeria tenella infection by facilitating apoptosis of host cells and suppressing inflammatory response. Veterinary Parasitology, 254, 172-177. https://doi.org/10.1016/j.vetpar.2018.03.017

[27]

Yue, K., Cao, Q.Q., Shaukat, A., Zhang, C., & Huang, S.C. (2024). Insights into the evaluation, influential factors and improvement strategies for poultry meat quality: A review. NPJ Science of Food, 8(1), 62. https://doi.org/10.1038/s41538-024-00306-6

[28]

Muthamilselvan, T., Kuo, T.F., Wu, Y.C., & Yang, W.C. (2016). Herbal remedies for coccidiosis control: A review of plants, compounds, and anticoccidial actions. Evidence-based Complementary and Alternative Medicine, 2016(1), 2657981. https://doi.org/10.1155/2016/2657981

[29]

Wang, L., Guo, Z., Gong, Z., Cai, J., Yang, F., Wei, X., & Niu, B. (2020). Efficacy of an oral solution prepared from the ultrasonic extract of Radix dichroae roots against Eimeria tenella in broiler chickens. Evidence-based Complementary and Alternative Medicine, 2020(1), 3870902. https://doi.org/10.1155/2020/3870902

[30]

Rizwan, H.M., Khan, M.K., Mughal, M. A.S., Abbas, Z., Abbas, R.Z., Sindhu, Z. U.D., Sajid, M.S., Ain, Q.U., Abbas, A., Zafar, A., Imran, M., Aqib, A.I., & Nadeem, M. (2022). A new insight in immunomodulatory impact of botanicals in treating avian coccidiosis. Journal of Parasitic Diseases, 46(4), 1164-1175. https://doi.org/10.1007/s12639-022-01519-w

[31]

Zheng, L., Zhang, L., Tan, F., Zhang, H., Wang, L., & Zheng, M. (2024). Lactococcus lactis NZ3900/pNZ8149-IL-4-IL-2 as an adjuvant to reduce vaccine dose in chicken coccidia live mixed vaccine. Animal Research and One Health, 2(1), 50-58. https://doi.org/10.1002/aro2.12

[32]

Cai, H., Liao, S., Li, J., Liu, Q., Luo, S., Lv, M., Lin, X., Hu, J., Zhang, J., Qi, N., & Sun, M. (2022). Single and combined effects of Clostridium butyricum and coccidiosis vaccine on growth performance and the intestinal microbiome of broiler chickens. Frontiers in Microbiology, 13, 811428. https://doi.org/10.3389/fmicb.2022.811428

[33]

Lee, Y., Park, I., Wickramasuriya, S.S., & Lillehoj, H.S. (2023). Bacillus subtilis expressing chicken NK-2 peptide enhances the efficacy of EF-1α vaccination in Eimeria maxima-challenged broiler chickens. Animals, 13(8), 1383. https://doi.org/10.3390/ani13081383

[34]

Belli, S.I., Smith, N.C., & Ferguson, D. J.P. (2006). The coccidian oocyst: A tough nut to crack. Trends in Parasitology, 22(9), 416-423. https://doi.org/10.1016/j.pt.2006.07.004

[35]

Del Cacho, E., Gallego, M., Lillehoj, H.S., Quílez, J., Lillehoj, E.P., Ramo, A., & Sánchez-Acedo, C. (2014). IL-17A regulates Eimeria tenella schizont maturation and migration in avian coccidiosis. Veterinary Research, 45(1), 25. https://doi.org/10.1186/1297-9716-45-25

[36]

Teng, P.-Y., Liu, G., Choi, J., Yadav, S., Wei, F., & Kim, W.K. (2023). Effects of levels of methionine supplementations in forms of L- or DL-methionine on the performance, intestinal development, immune response, and antioxidant system in broilers challenged with Eimeria spp. Poultry Science, 102(5), 102586. https://doi.org/10.1016/j.psj.2023.102586

[37]

Park, I., Nam, H., Goo, D., Wickramasuriya, S.S., Zimmerman, N., Smith, A.H., Rehberger, T.G., & Lillehoj, H.S. (2022). Gut microbiota-derived indole-3-carboxylate influences mucosal integrity and immunity through the activation of the aryl hydrocarbon receptors and nutrient transporters in broiler chickens challenged with Eimeria maxima. Frontiers in Immunology, 13, 867754. https://doi.org/10.3389/fimmu.2022.867754

[38]

Park, I., Lee, Y., Goo, D., Zimmerman, N.P., Smith, A.H., Rehberger, T., & Lillehoj, H.S. (2020). The effects of dietary Bacillus subtilis supplementation, as an alternative to antibiotics, on growth performance, intestinal immunity, and epithelial barrier integrity in broiler chickens infected with Eimeria maxima. Poultry Science, 99(2), 725-733. https://doi.org/10.1016/j.psj.2019.12.002

[39]

Madlala, T., Okpeku, M., & Adeleke, M.A. (2021). Understanding the interactions between Eimeria infection and gut microbiota, towards the control of chicken coccidiosis: A review. Parasite, 28, 48. https://doi.org/10.1051/parasite/2021047

[40]

Liu, A.-J., Wang, S.-H., Chen, K.-C., Kuei, H.-P., Shih, Y.-L., Hou, S.-Y., Chiu, W.-T., Hsiao, S.-H., & Shih, C.-M. (2013). Evodiamine, a plant alkaloid, induces calcium/JNK-mediated autophagy and calcium/mitochondria-mediated apoptosis in human glioblastoma cells. Chemico-Biological Interactions, 205(1), 20-28. https://doi.org/10.1016/j.cbi.2013.06.004

[41]

Chen, P., Li, S., Zheng, L., Wang, Z., He, Y., Liu, K., Li, M., Wang, Y., Shaukat, A., Li, S., Huang, S., & Jian, F. (2024). Effects of Radix dichroae extract supplementation on growth performance, oocysts output and gut microbiota in growing lambs with coccidiosis. Veterinary Research Communications, 48(1), 279-290. https://doi.org/10.1007/s11259-023-10209-8

[42]

del Cacho, E., Gallego, M., Francesch, M., Quílez, J., & Sánchez-Acedo, C. (2010). Effect of artemisinin on oocyst wall formation and sporulation during Eimeria tenella infection. Parasitology International, 59(4), 506-511. https://doi.org/10.1016/j.parint.2010.04.001

[43]

Kaingu, F., Liu, D., Wang, L., Tao, J., Waihenya, R., & Kutima, H. (2017). Anticoccidial effects of Aloe secundiflora leaf extract against Eimeria tenella in broiler chicken. Tropical Animal Health and Production, 49(4), 823-828. https://doi.org/10.1007/s11250-017-1267-y

[44]

Yang, W.C., Yang, C.Y., Liang, Y.C., Yang, C.W., Li, W.Q., Chung, C.Y., Yang, M.T., Kuo, T.F., Lin, C.F., Liang, C.L., & Chang, C.L. (2019). Anti-coccidial properties and mechanisms of an edible herb, Bidens pilosa, and its active compounds for coccidiosis. Scientific Reports, 9(1), 2896. https://doi.org/10.1038/s41598-019-39194-2

[45]

Memon, F.U., Yang, Y., Lv, F., Soliman, A.M., Chen, Y., Sun, J., Wang, Y., Zhang, G., Li, Z., Xu, B., Gadahi, J.A., & Si, H. (2021). Effects of probiotic and Bidens pilosa on the performance and gut health of chicken during induced Eimeria tenella infection. Journal of Applied Microbiology, 131(1), 425-434. https://doi.org/10.1111/jam.14928

[46]

Chang, C.L., Chung, C.Y., Kuo, C.H., Kuo, T.F., Yang, C.W., & Yang, W.C. (2016). Beneficial effect of Bidens pilosa on body weight gain, food conversion ratio, gut bacteria and coccidiosis in chickens. PLoS One, 11(1), e0146141. https://doi.org/10.1371/journal.pone.0146141

[47]

Kim, D.K., Lillehoj, H.S., Lee, S.H., Jang, S.I., Lillehoj, E.P., & Bravo, D. (2013). Dietary Curcuma longa enhances resistance against Eimeria maxima and Eimeria tenella infections in chickens. Poultry Science, 92(10), 2635-2643. https://doi.org/10.3382/ps.2013-03095

[48]

Khalafalla, R.E., Müller, U., Shahiduzzaman, M., Dyachenko, V., Desouky, A.Y., Alber, G., & Daugschies, A. (2011). Effects of curcumin (diferuloylmethane) on Eimeria tenella sporozoites in vitro. Parasitology Research, 108(4), 879-886. https://doi.org/10.1007/s00436-010-2129-y

[49]

Kaleem, Q.M., Akhtar, M., Awais, M.M., Saleem, M., Zafar, M., Iqbal, Z., Muhammad, F., & Anwar, M.I. (2014). Studies on Emblica officinalis derived tannins for their immunostimulatory and protective activities against coccidiosis in industrial broiler chickens. The Scientific World Journal, 2014, 378473. https://doi.org/10.1155/2014/378473

[50]

Alnassan, A.A., Thabet, A., Daugschies, A., & Bangoura, B. (2015). In vitro efficacy of allicin on chicken Eimeria tenella sporozoites. Parasitology Research, 114(10), 3913-3915. https://doi.org/10.1007/s00436-015-4637-2

[51]

Sidiropoulou, E., Skoufos, I., Marugan-Hernandez, V., Giannenas, I., Bonos, E., Aguiar-Martins, K., Lazari, D., Blake, D.P., & Tzora, A. (2020). In vitro anticoccidial study of oregano and garlic essential oils and effects on growth performance, fecal oocyst output, and intestinal microbiota in vivo. Frontiers in Veterinary Science, 7, 420. https://doi.org/10.3389/fvets.2020.00420

[52]

Jang, S.I., Jun, M.H., Lillehoj, H.S., Dalloul, R.A., Kong, I.K., Kim, S., & Min, W. (2007). Anticoccidial effect of green tea-based diets against Eimeria maxima. Veterinary Parasitology, 144(1-2), 172-175. https://doi.org/10.1016/j.vetpar.2006.09.005

[53]

Jelveh, K., Rasouli, B., Kadim, I.T., Slozhenkina, M.I., Gorlov, I.F., Seidavi, A., & Phillips, C. J.C. (2022). The effects of green tea in the diet of broilers challenged with coccidiosis on their performance, carcass characteristics, intestinal mucosal morphology, blood constituents and ceca microflora. Veterinary Medicine and Science, 8(6), 2511-2520. https://doi.org/10.1002/vms3.923

[54]

Iosr, J., Abdul-Lateef, M., & Abbas, M. (2015). Effect of selenium-rich green tea extract on the course of sporulation of Eimeria oocysts. IOSR Journal of Dental and Medical Sciences, 14(4), 68-74. https://doi.org/10.9790/0853-14436874

[55]

Wang, M.L., Suo, X., Gu, J.H., Zhang, W.W., Fang, Q., & Wang, X. (2008). Influence of grape seed proanthocyanidin extract in broiler chickens: Effect on chicken coccidiosis and antioxidant status. Poultry Science, 87(11), 2273-2280. https://doi.org/10.3382/ps.2008-00077

[56]

Jia, L., Wu, J., Lei, Y., Kong, F., Zhang, R., Sun, J., Wang, L., Li, Z., Shi, J., Wang, Y., Wei, Y., Zhang, K., & Lei, Z. (2022). Oregano essential oils mediated intestinal microbiota and metabolites and improved growth performance and intestinal barrier function in sheep. Frontiers in Immunology, 13, 908015. https://doi.org/10.3389/fimmu.2022.908015

[57]

Mohiti-Asli, M., & Ghanaatparast-Rashti, M. (2015). Dietary oregano essential oil alleviates experimentally induced coccidiosis in broilers. Preventive Veterinary Medicine, 120(2), 195-202. https://doi.org/10.1016/j.prevetmed.2015.03.014

[58]

Sárközi, S., Almássy, J., Lukács, B., Dobrosi, N., Nagy, G., & Jóna, I. (2007). Effect of natural phenol derivatives on skeletal type sarcoplasmic reticulum Ca2+-ATPase and ryanodine receptor. Journal of Muscle Research & Cell Motility, 28(2-3), 167-174. https://doi.org/10.1007/s10974-007-9113-x

[59]

Zhou, B.H., Yang, J.Y., Ding, H.Y., Chen, Q.P., Tian, E.J., & Wang, H.W. (2021). Anticoccidial effect of toltrazuril and Radix Sophorae Flavescentis combination: Reduced inflammation and promoted mucosal immunity. Veterinary Parasitology, 296, 109477. https://doi.org/10.1016/j.vetpar.2021.109477

[60]

Niu, Y., Dong, Q., & Li, R. (2017). Matrine regulates Th1/Th2 cytokine responses in rheumatoid arthritis by attenuating the NF-κB signaling. Cell Biology International, 41(6), 611-621. https://doi.org/10.1002/cbin.10763

[61]

El-Ghareeb, W.R., Kishawy, A. T.Y., Anter, R. G.A., Aboelabbas Gouda, A., Abdelaziz, W.S., Alhawas, B., Meligy, A. M.A., Abdel-Raheem, S.M., Ismail, H., & Ibrahim, D. (2023). Novel antioxidant insights of myricetin on the performance of broiler chickens and alleviating experimental infection with Eimeria spp.: Crosstalk between oxidative stress and inflammation. Antioxidants, 12(5), 1026. https://doi.org/10.3390/antiox12051026

[62]

Awais, M.M., Akhtar, M., Anwar, M.I., & Khaliq, K. (2018). Evaluation of Saccharum officinarum L. bagasse-derived polysaccharides as native immunomodulatory and anticoccidial agents in broilers. Veterinary Parasitology, 249, 74-81. https://doi.org/10.1016/j.vetpar.2017.11.012

[63]

Abbas, A., Iqbal, Z., Abbas, R.Z., Khan, M.K., Khan, J. A. J. L.A., Medicinal, C. B.o., & Plants, A. (2015). In-vitro anticoccidial potential of Saccharum officinarum extract against Eimeria oocysts. Boletãn Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 14(6), 456-461.

[64]

Oelschlager, M.L., Rasheed, M. S.A., Smith, B.N., Rincker, M.J., & Dilger, R.N. (2019). Effects of Yucca schidigera-derived saponin supplementation during a mixed Eimeria challenge in broilers. Poultry Science, 98(8), 3212-3222. https://doi.org/10.3382/ps/pez051

[65]

Francis, G., Kerem, Z., Makkar, H.P., & Becker, K. (2002). The biological action of saponins in animal systems: A review. The British Journal of Nutrition, 88(6), 587-605. https://doi.org/10.1079/BJN2002725

[66]

Remmal, A., Achahbar, S., Bouddine, L., Chami, N., & Chami, F. (2011). In vitro destruction of Eimeria oocysts by essential oils. Veterinary Parasitology, 182(2), 121-126. https://doi.org/10.1016/j.vetpar.2011.06.002

[67]

Felici, M., Tugnoli, B., Ghiselli, F., Massi, P., Tosi, G., Fiorentini, L., Piva, A., & Grilli, E. (2020). In vitro anticoccidial activity of thymol, carvacrol, and saponins. Poultry Science, 99(11), 5350-5355. https://doi.org/10.1016/j.psj.2020.07.035

[68]

Burt, S.A., Tersteeg-Zijderveld, M.H., Jongerius-Gortemaker, B.G., Vervelde, L., & Vernooij, J.C. (2013). In vitro inhibition of Eimeria tenella invasion of epithelial cells by phytochemicals. Veterinary Parasitology, 191(3-4), 374-378. https://doi.org/10.1016/j.vetpar.2012.09.001

[69]

Pop, L.M., Varga, E., Coroian, M., Nedişan, M.E., Mircean, V., Dumitrache, M.O., Farczádi, L., Fülöp, I., Croitoru, M.D., Fazakas, M., & Gyӧrke, A. (2019). Efficacy of a commercial herbal formula in chicken experimental coccidiosis. Parasites & Vectors, 12(1), 343. https://doi.org/10.1186/s13071-019-3595-4

[70]

del Cacho, E., Gallego, M., López-Bernad, F., Quílez, J., & Sánchez-Acedo, C. (2004). Expression of anti-apoptotic factors in cells parasitized by second-generation schizonts of Eimeria tenella and Eimeria necatrix. Veterinary Parasitology, 125(3), 287-300. https://doi.org/10.1016/j.vetpar.2004.07.017

[71]

Abbasi, R., Abdi-Hachesoo, B., Razavi, S.M., Namazi, F., & Nazifi, S. (2020). In vitro and in vivo activity of cinnamaldehyde against Eimeria kofoidi in chukar partridge (Alectoris chukar). Experimental Parasitology, 218, 107978. https://doi.org/10.1016/j.exppara.2020.107978

[72]

Molan, A.L., Liu, Z., & De, S. (2009). Effect of pine bark (Pinus radiata) extracts on sporulation of coccidian oocysts. Folia Parasitologica, 56(1), 1-5. https://doi.org/10.14411/fp.2009.001

[73]

Fatemi, A., Razavi, S.M., Asasi, K., & Goudarzi, M.T. (2015). Effects of Artemisia annua extracts on sporulation of Eimeria oocysts. Parasitology Research, 114(3), 1207-1211. https://doi.org/10.1007/s00436-014-4304-z

[74]

Yang, M.T., Lin, Y.X., Yang, G., Kuo, T.F., Liang, Y.C., Lee, T.H., Chang, C.L., & Yang, W.C. (2022). Functional and mechanistic studies of two anti-coccidial herbs, Bidens pilosa and Artemisia indica. Planta Medica, 88(3-4), 282-291. https://doi.org/10.1055/a-1527-9715

[75]

Lv, X.L., Wang, Y.Y., Zheng, M.X., Bai, R., Zhang, L., Duan, B.T., Lei, X., Zhang, X.S., Zhao, Y.J., Cui, K.L., & Xu, T. (2022). The role of Ca(2+) in the injury of host cells during the schizogenic stage of E. tenella. Poultry Science, 101(7), 101916. https://doi.org/10.3389/fcimb.2021.751481

[76]

Li, S., Zheng, M.X., Xu, H.C., Cui, X.Z., Zhang, Y., Zhang, L., Yang, S.S., Xu, Z.Y., Bai, R., & Sun, X.G. (2017). Mitochondrial pathways are involved in Eimeria tenella-induced apoptosis of chick embryo cecal epithelial cells. Parasitology Research, 116(1), 225-235. https://doi.org/10.1007/s00436-016-5283-z

[77]

Mo, P., Ma, Q., Zhao, X., Cheng, N., Tao, J., & Li, J. (2014). Apoptotic effects of antimalarial artemisinin on the second generation merozoites of Eimeria tenella and parasitized host cells. Veterinary Parasitology, 206(3-4), 297-303. https://doi.org/10.1016/j.vetpar.2014.09.025

[78]

Keely, S.J., & Barrett, K.E. (2022). Intestinal secretory mechanisms and diarrhea. American Journal of Physiology-Gastrointestinal and Liver Physiology, 322(4), G405-G420. https://doi.org/10.1152/ajpgi.00316.2021

[79]

Allaire, J.M., Crowley, S.M., Law, H.T., Chang, S.Y., Ko, H.J., & Vallance, B.A. (2018). The intestinal epithelium: Central coordinator of mucosal immunity. Trends in Immunology, 39(9), 677-696. https://doi.org/10.1016/j.it.2018.04.002

[80]

Taylor, M.A., Catchpole, J., Marshall, J., Marshall, R.N., & Hoeben, D. (2003). Histopathological observations on the activity of diclazuril (Vecoxan®) against the endogenous stages of Eimeria crandallis in sheep. Veterinary Parasitology, 116(4), 305-314. https://doi.org/10.1016/s0304-4017(03)00256-5

[81]

Zhang, Y., Zheng, M.X., Xu, Z.Y., Xu, H.C., Cui, X.Z., Yang, S.S., Zhao, W.L., Li, S., Lv, Q.H., & Bai, R. (2015). Relationship between Eimeria tenella development and host cell apoptosis in chickens. Poultry Science, 94(12), 2970-2979. https://doi.org/10.3382/ps/pev293

[82]

Memon, F.U., Yang, Y., Soliman, A.M., Lv, F., Rajput, N., Zhang, G., Baig, M.B., Wang, Y., & Si, H. (2021). Dietary supplementation with Piper sarmentosum extract on gut health of chickens infected with Eimeria tenella. Tropical Animal Health and Production, 53(5), 497. https://doi.org/10.1007/s11250-021-02934-6

[83]

Zhou, L., Lin, Y., Chang, Y., Abouelezz, K. F.M., Zhou, H., Wang, J., Hou, G., & Wang, D. (2023). The influence of Piper sarmentosum extract on growth performance, intestinal barrier function, and metabolism of growing chickens. Animals, 13(13), 2108. https://doi.org/10.3390/ani13132108

[84]

Park, I., Nam, H., Wickramasuriya, S.S., Lee, Y., Wall, E.H., Ravichandran, S., & Lillehoj, H.S. (2023). Host-mediated beneficial effects of phytochemicals for prevention of avian coccidiosis. Frontiers in Immunology, 14, 1145367. https://doi.org/10.3389/fimmu.2023.1145367

[85]

Okumura, R., & Takeda, K. (2017). Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Experimental & Molecular Medicine, 49(5), e338. https://doi.org/10.1038/emm.2017.20

[86]

Johansson, M.E., Phillipson, M., Petersson, J., Velcich, A., Holm, L., & Hansson, G.C. (2008). The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proceedings of the National Academy of Sciences of the United States of America, 105(39), 15064-15069. https://doi.org/10.1073/pnas.0803124105

[87]

Linden, S.K., Sutton, P., Karlsson, N.G., Korolik, V., & McGuckin, M.A. (2008). Mucins in the mucosal barrier to infection. Mucosal Immunology, 1(3), 183-197. https://doi.org/10.1038/mi.2008.5

[88]

Dkhil, M.A., Delic, D., & Al-Quraishy, S. (2013). Goblet cells and mucin related gene expression in mice infected with Eimeria papillata. The Scientific World Journal, 2013(1), 439865. https://doi.org/10.1155/2013/439865

[89]

Michael, E. (1974). Presence and development of Eimeria acervulina in the goblet cells of the duodenal epithelium in experimentally infected birds. Zeitschrift fuer Parasitenkunde, 44(2), 165-168. https://doi.org/10.1007/BF02433468

[90]

Cloft, S.E., Miska, K.B., Jenkins, M., Proszkowiec-Weglarz, M., Kahl, S., & Wong, E.A. (2023). Temporal changes of genes associated with intestinal homeostasis in broiler chickens following a single infection with Eimeria acervulina. Poultry Science, 102(4), 102537. https://doi.org/10.1016/j.psj.2023.102537

[91]

Sies, H. (2015). Oxidative stress: A concept in redox biology and medicine. Redox Biology, 4, 180-183. https://doi.org/10.1016/j.redox.2015.01.002

[92]

Filomeni, G., De Zio, D., & Cecconi, F. (2015). Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death & Differentiation, 22(3), 377-388. https://doi.org/10.1038/cdd.2014.150

[93]

Masood, S., Abbas, R.Z., Iqbal, Z., Mansoor, M.K., Sindhu, Z. U.D., Zia, M., & Khan, J.A. (2013). Role of natural antioxidants for the control of coccidiosis in poultry. Pakistan Veterinary Journal, 33(4), 401-407.

[94]

Zhang, C., Xu, T., Lin, L., Shaukat, A., Tong, X., Yue, K., Cao, Q., Zhang, C., Liu, F., & Huang, S. (2022). Morinda officinalis polysaccharides ameliorates bone growth by attenuating oxidative stress and regulating the gut microbiota in thiram-induced tibial dyschondroplasia chickens. Metabolites, 12(10), 958. https://doi.org/10.3390/metabo12100958

[95]

Lin, L., Fu, P., Chen, N., Gao, N., Cao, Q., Yue, K., Xu, T., Zhang, C., Zhang, C., Liu, F., Wang, X., & Huang, S. (2022). Total flavonoids of Rhizoma Drynariae protect hepatocytes against aflatoxin B1-induced oxidative stress and apoptosis in broiler chickens. Ecotoxicology and Environmental Safety, 230, 113148. https://doi.org/10.1016/j.ecoenv.2021.113148

[96]

Murshed, M., Al-Tamimi, J., Aljawdah, H. M.A., & Al-Quraishy, S. (2023). Pharmacological effects of grape leaf extract reduce eimeriosis-induced inflammation, oxidative status change, and goblet cell response in the jejunum of mice. Pharmaceuticals, 16(7), 928. https://doi.org/10.3390/ph16070928

[97]

Zhang, L., Wang, X., Huang, S., Huang, Y., Shi, H., & Bai, X. (2023). Effects of dietary essential oil supplementation on growth performance, carcass yield, meat quality, and intestinal tight junctions of broilers with or without Eimeria challenge. Poultry Science, 102(9), 102874. https://doi.org/10.1016/j.psj.2023.102874

[98]

Chang, L.Y., Di, K.Q., Xu, J., Chen, Y.F., Xi, J.Z., Wang, D.H., Hao, E.Y., Xu, L.J., Chen, H., & Zhou, R.Y. (2021). Effect of natural garlic essential oil on chickens with artificially infected Eimeria tenella. Veterinary Parasitology, 300, 109614. https://doi.org/10.1016/j.vetpar.2021.109614

[99]

Elbaz, A.M., Ashmawy, E.S., Salama, A.A., Abdel-Moneim, A.E., Badri, F.B., & Thabet, H.A. (2022). Effects of garlic and lemon essential oils on performance, digestibility, plasma metabolite, and intestinal health in broilers under environmental heat stress. BMC Veterinary Research, 18(1), 430. https://doi.org/10.1186/s12917-022-03530-y

[100]

Geng, T., Peng, X., Wu, L., Shen, B., Fang, R., Zhao, J., & Zhou, Y. (2024). Anticoccidial activity of essential oils containing eugenol against Eimeria tenella in broiler chickens. Animal Diseases, 4(1), 12. https://doi.org/10.1186/s44149-024-00116-z

[101]

Sardinha-Silva, A., Alves-Ferreira, E. V.C., & Grigg, M.E. (2022). Intestinal immune responses to commensal and pathogenic protozoa. Frontiers in Immunology, 13, 963723. https://doi.org/10.3389/fimmu.2022.963723

[102]

Min, W., Kim, W.H., Lillehoj, E.P., & Lillehoj, H.S. (2013). Recent progress in host immunity to avian coccidiosis: IL-17 family cytokines as sentinels of the intestinal mucosa. Developmental & Comparative Immunology, 41(3), 418-428. https://doi.org/10.1016/j.dci.2013.04.003

[103]

Dimier-Poisson, I.H., Soundouss, Z., Naciri, M., Bout, D.T., & Quéré, P. (1999). Mechanisms of the Eimeria tenella growth inhibitory activity induced by concanavalin A and reticuloendotheliosis virus supernatants with interferon gamma activity in chicken macrophages and fibroblasts. Avian Diseases, 43(1), 65-74. https://doi.org/10.2307/1592763

[104]

Song, X., Huang, X., Yan, R., Xu, L., & Li, X. (2015). Efficacy of chimeric DNA vaccines encoding Eimeria tenella 5401 and chicken IFN-γ or IL-2 against coccidiosis in chickens. Experimental Parasitology, 156, 19-25. https://doi.org/10.1016/j.exppara.2015.05.003

[105]

Takehara, K., Kobayashi, K., Ruttanapumma, R., Kamikawa, M., Nagata, T., Yokomizo, Y., & Nakamura, M. (2003). Adjuvant effect of chicken interferon-gamma for inactivated Salmonella Enteritidis antigen. Journal of Veterinary Medical Science, 65(12), 1337-1341. https://doi.org/10.1292/jvms.65.1337

[106]

Hong, Y.H., Lillehoj, H.S., Lillehoj, E.P., & Lee, S.H. (2006). Changes in immune-related gene expression and intestinal lymphocyte subpopulations following Eimeria maxima infection of chickens. Veterinary Immunology and Immunopathology, 114(3), 259-272. https://doi.org/10.1016/j.vetimm.2006.08.006

[107]

Chen, C., Zhang, Y., Liu, J., Wang, M., Lu, M., Xu, L., Yan, R., Li, X., & Song, X. (2022). An Eimeria maxima antigen: Its functions on stimulating Th1 cytokines and protective efficacy against coccidiosis. Frontiers in Immunology, 13, 872015. https://doi.org/10.3389/fimmu.2022.872015

[108]

Fries-Craft, K., Lamont, S.J., & Bobeck, E.A. (2023). Implementing real-time immunometabolic assays and immune cell profiling to evaluate systemic immune response variations to Eimeria challenge in three novel layer genetic lines. Frontiers in Veterinary Science, 10, 1179198. https://doi.org/10.3389/fvets.2023.1179198

[109]

Kim, W.H., Chaudhari, A.A., & Lillehoj, H.S. (2019). Involvement of T cell immunity in avian coccidiosis. Frontiers in Immunology, 10, 2732. https://doi.org/10.3389/fimmu.2019.02732

[110]

Park, H.Y., Yu, A.R., Hong, H.D., Kim, H.H., Lee, K.W., & Choi, H.D. (2016). Immunomodulatory effects of nontoxic glycoprotein fraction isolated from rice bran. Planta Medica, 82(7), 606-611. https://doi.org/10.1055/s-0042-101944

[111]

Hooge, D.M., Mathis, G.F., Lumpkins, B.S., Ponebsek, J., & Moran, D. (2012). Dose-responses of broiler chicks, given live coccidia vaccine on day of hatch, to diets supplemented with various levels of Farmatan® (sweet chestnut wood tannins) or BMD®/Stafac® in a 42-day pen trial on built-up litter. International Journal of Poultry Science, 11(7), 474-481. https://doi.org/10.3923/ijps.2012.474.481

[112]

Thakur, M., Connellan, P., Deseo, M.A., Morris, C., & Dixit, V.K. (2011). Immunomodulatory polysaccharide from Chlorophytum borivilianum roots. Evidence-based Complementary and Alternative Medicine, 2011(1), 598521. https://doi.org/10.1093/ecam/neq012

[113]

Akhtar, M., Tariq, A.F., Awais, M.M., Iqbal, Z., Muhammad, F., Shahid, M., & Hiszczynska-Sawicka, E. (2012). Studies on wheat bran Arabinoxylan for its immunostimulatory and protective effects against avian coccidiosis. Carbohydrate Polymers, 90(1), 333-339. https://doi.org/10.1016/j.carbpol.2012.05.048

[114]

Rostami, F., Taherpour, K., Ghasemi, H.A., Akbari Gharaei, M., & Shirzadi, H. (2021). Effects of Scrophularia striata hydroalcoholic extract in comparison to salinomycin on growth performance, intestinal health and immunity in broiler chickens following a mixed-species Eimeria challenge. Veterinary Parasitology, 293, 109417. https://doi.org/10.1016/j.vetpar.2021.109417

[115]

Mo, J., Xiang, J., Li, J., Yang, M., Zhang, Z., Zhang, L., Zhang, G., Yang, Y., Liu, G., Lu, Y., Hu, D., & Si, H. (2023). Natural Magnolol ameliorates coccidiosis infected with Eimeria tenella by affecting antioxidant, anti-inflammatory, and gut microbiota of chicks. Poultry Science, 102(11), 102975. https://doi.org/10.1016/j.psj.2023.102975

[116]

Guo, F.C., Kwakkel, R.P., Williams, B.A., Parmentier, H.K., Li, W.K., Yang, Z.Q., & Verstegen, M.W. (2004). Effects of mushroom and herb polysaccharides on cellular and humoral immune responses of Eimeria tenella-infected chickens. Poultry Science, 83(7), 1124-1132. https://doi.org/10.1093/ps/83.7.1124

[117]

Dalloul, R.A., Lillehoj, H.S., Lee, J.S., Lee, S.H., & Chung, K.S. (2006). Immunopotentiating effect of a Fomitella fraxinea-derived lectin on chicken immunity and resistance to coccidiosis. Poultry Science, 85(3), 446-451. https://doi.org/10.1093/ps/85.3.446

[118]

Lee, S.H., Lillehoj, H.S., Jang, S.I., Lee, K.W., Bravo, D., & Lillehoj, E.P. (2011). Effects of dietary supplementation with phytonutrients on vaccine-stimulated immunity against infection with Eimeria tenella. Veterinary Parasitology, 181(2-4), 97-105. https://doi.org/10.1016/j.vetpar.2011.05.003

[119]

Liu, M., Chen, R., Wang, T., Ding, Y., Zhang, Y., Huang, G., Huang, J., Qu, Q., Lv, W., & Guo, S. (2024). Dietary Chinese herbal mixture supplementation improves production performance by regulating reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders. Poultry Science, 103(1), 103201. https://doi.org/10.1016/j.psj.2023.103201

[120]

Aarvak, T., Chabaud, M., Thoen, J., Miossec, P., & Natvig, J.B. (2000). Changes in the Th1 or Th2 cytokine dominance in the synovium of rheumatoid arthritis (RA): A kinetic study of the Th subsets in one unusual RA patient. Rheumatology, 39(5), 513-522. https://doi.org/10.1093/rheumatology/39.5.513

[121]

Hassan, S. M.H., Zayeda, R., Elakany, H., Badr, S., Abou-Rawash, A., & Abd-Ellatieff, H. (2024). Anticoccidial activity of Aloe Vera Leafs’ aqueous extract and vaccination against Eimeria tenella: Pathological study in broilers. Veterinary Research Communications, 48(1), 403-416. https://doi.org/10.1007/s11259-023-10222-x

[122]

Sander, V.A., Corigliano, M.G., & Clemente, M. (2019). Promising plant-derived adjuvants in the development of coccidial vaccines. Frontiers in Veterinary Science, 6, 20. https://doi.org/10.3389/fvets.2019.00020

[123]

Tonda, R.M., Rubach, J.K., Lumpkins, B.S., Mathis, G.F., & Poss, M.J. (2018). Effects of tannic acid extract on performance and intestinal health of broiler chickens following coccidiosis vaccination and/or a mixed-species Eimeria challenge. Poultry Science, 97(9), 3031-3042. https://doi.org/10.3382/ps/pey158

[124]

Chen, P., Xu, T., Zhang, C., Tong, X., Shaukat, A., He, Y., Liu, K., & Huang, S. (2022). Effects of probiotics and gut microbiota on bone metabolism in chickens: A review. Metabolites, 12(10), 1000. https://doi.org/10.3390/metabo12101000

[125]

Yoshida, N., Yamashita, T., Osone, T., Hosooka, T., Shinohara, M., Kitahama, S., Sasaki, K., Sasaki, D., Yoneshiro, T., Suzuki, T., Emoto, T., Saito, Y., Ozawa, G., Hirota, Y., Kitaura, Y., Shimomura, Y., Okamatsu-Ogura, Y., Saito, M., Kondo, A., … Hirata, K.I. (2021). Bacteroides spp. promotes branched-chain amino acid catabolism in brown fat and inhibits obesity. iScience, 24(11), 103342. https://doi.org/10.1016/j.isci.2021.103342

[126]

Agus, A., Planchais, J., & Sokol, H. (2018). Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host & Microbe, 23(6), 716-724. https://doi.org/10.1016/j.chom.2018.05.003

[127]

Angelakis, E., & Raoult, D. (2010). The increase of Lactobacillus species in the gut flora of newborn broiler chicks and ducks is associated with weight gain. PLoS One, 5(5), e10463. https://doi.org/10.1371/journal.pone.0010463

[128]

de Jesus, L. C.L., Freitas, A. D.S., Dutra, J., Campos, G.M., Américo, M.F., Laguna, J.G., Dornelas, E.G., Carvalho, R. D.O., Vital, K.D., Fernandes, S. O.A., Cardoso, V.N., de Oliveira, J.S., de Oliveira, M. F.A., Faria, A. M.C., Ferreira, E., Souza, R.O., Martins, F.S., Barroso, F. A.L., & Azevedo, V. (2024). Lactobacillus delbrueckii CIDCA 133 fermented milk modulates inflammation and gut microbiota to alleviate acute colitis. Food Research International, 186, 114322. https://doi.org/10.1016/j.foodres.2024.114322

[129]

Ho, S.W., El-Nezami, H., Corke, H., Ho, C.S., & Shah, N.P. (2022). L-citrulline enriched fermented milk with Lactobacillus helveticus attenuates dextran sulfate sodium (DSS) induced colitis in mice. The Journal of Nutritional Biochemistry, 99, 108858. https://doi.org/10.1016/j.jnutbio.2021.108858

[130]

Singh, R.P. (2019). Glycan utilisation system in Bacteroides and Bifidobacteria and their roles in gut stability and health. Applied Microbiology and Biotechnology, 103(18), 7287-7315. https://doi.org/10.1007/s00253-019-10012-z

[131]

Yang, W.Y., Lee, Y., Lu, H., Chou, C.H., & Wang, C. (2019). Analysis of gut microbiota and the effect of lauric acid against necrotic enteritis in Clostridium perfringens and Eimeria side-by-side challenge model. PLoS One, 14(5), e0205784. https://doi.org/10.1371/journal.pone.0205784

[132]

Murakami, A.E., Eyng, C., & Torrent, J. (2014). Effects of functional oils on coccidiosis and apparent metabolizable energy in broiler chickens. Asian-Australasian Journal of Animal Sciences, 27(7), 981-989. https://doi.org/10.5713/ajas.2013.13449

[133]

Moraes, P.O., Cardinal, K.M., Gouvêa, F.L., Schroeder, B., Ceron, M.S., Lunedo, R., Frazzon, A. P.G., Frazzon, J., & Ribeiro, A. M.L. (2019). Comparison between a commercial blend of functional oils and monensin on the performance and microbiota of coccidiosis-challenged broilers. Poultry Science, 98(11), 5456-5464. https://doi.org/10.3382/ps/pez345

[134]

Pires, P., Torres, P., Teixeira Soratto, T.A., Filho, V.B., Hauptli, L., Wagner, G., Haese, D., Pozzatti, C.D., & Moraes, P.O. (2022). Comparison of functional-oil blend and anticoccidial antibiotics effects on performance and microbiota of broiler chickens challenged by coccidiosis. PLoS One, 17(7), e0270350. https://doi.org/10.1371/journal.pone.0270350

[135]

Roy, S., & Dhaneshwar, S. (2023). Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: Current perspectives. World Journal of Gastroenterology, 29(14), 2078-2100. https://doi.org/10.3748/wjg.v29.i14.2078

[136]

Li, H.Y., Zhou, D.D., Gan, R.Y., Huang, S.Y., Zhao, C.N., Shang, A., Xu, X.Y., & Li, H.B. (2021). Effects and mechanisms of probiotics, prebiotics, synbiotics, and postbiotics on metabolic diseases targeting gut microbiota: A narrative review. Nutrients, 13(9), 3211. https://doi.org/10.3390/nu13093211

[137]

Martyniak, A., Medyńska-Przęczek, A., Wędrychowicz, A., Skoczeń, S., & Tomasik, P.J. (2021). Prebiotics, probiotics, synbiotics, paraprobiotics and postbiotic compounds in IBD. Biomolecules, 11(12), 1903. https://doi.org/10.3390/biom11121903

[138]

Azpiroz, F., Dubray, C., Bernalier-Donadille, A., Cardot, J.M., Accarino, A., Serra, J., Wagner, A., Respondek, F., & Dapoigny, M. (2017). Effects of scFOS on the composition of fecal microbiota and anxiety in patients with irritable bowel syndrome: A randomized, double blind, placebo controlled study. Neuro-Gastroenterology and Motility, 29(2). https://doi.org/10.1111/nmo.12911

[139]

Wallimann, A., Magrath, W., Thompson, K., Moriarty, T., Richards, R.G., Akdis, C.A., O’Mahony, L., & Hernandez, C.J. (2021). Gut microbial-derived short-chain fatty acids and bone: A potential role in fracture healing. European Cells and Materials, 41, 454-470. https://doi.org/10.22203/eCM.v041a29

[140]

Lavelle, A., & Sokol, H. (2020). Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nature Reviews Gastroenterology & Hepatology, 17(4), 223-237. https://doi.org/10.1038/s41575-019-0258-z

[141]

Huang, S.C., He, Y.F., Chen, P., Liu, K.L., & Shaukat, A. (2023). Gut microbiota as a target in the bone health of livestock and poultry: Roles of short-chain fatty acids. Animal Diseases, 3(1), 23. https://doi.org/10.1186/s44149-023-00089-5

[142]

Castro, C., Niknafs, S., Gonzalez-Ortiz, G., Tan, X., Bedford, M.R., & Roura, E. (2024). Dietary xylo-oligosaccharides and arabinoxylans improved growth efficiency by reducing gut epithelial cell turnover in broiler chickens. Journal of Animal Science and Biotechnology, 15(1), 35. https://doi.org/10.1186/s40104-024-00991-z

[143]

Bozkurt, M., Aysul, N., Küçükyilmaz, K., Aypak, S., Ege, G., Catli, A.U., Aksit, H., Cöven, F., Seyrek, K., & Cinar, M. (2014). Efficacy of in-feed preparations of an anticoccidial, multienzyme, prebiotic, probiotic, and herbal essential oil mixture in healthy and Eimeria spp.-infected broilers. Poultry Science, 93(2), 389-399. https://doi.org/10.3382/ps.2013-03368

[144]

Karunaratne, N.D., Newkirk, R.W., van Kessel, A.G., Bedford, M.R., & Classen, H.L. (2021). Hulless barley and beta-glucanase levels in the diet affect the performance of coccidiosis-challenged broiler chickens in an age-dependent manner. Poultry Science, 100(2), 776-787. https://doi.org/10.1016/j.psj.2020.10.036

[145]

Scapini, L.B., de Cristo, A.B., Schmidt, J.M., Buzim, R., Nogueira, L.K., Palma, S.C., & Fernandes, J. I.M. (2019). Effect of β-mannanase supplementation in conventional diets on the performance, immune competence and intestinal quality of broilers challenged with Eimeria sp. The Journal of Applied Poultry Research, 28(4), 1048-1057. https://doi.org/10.3382/japr/pfz066

[146]

Elmusharaf, M.A., Peek, H.W., Nollet, L., & Beynen, A.C. (2007). The effect of an in-feed mannanoligosaccharide preparation (MOS) on a coccidiosis infection in broilers. Animal Feed Science and Technology, 134(3), 347-354. https://doi.org/10.1016/j.anifeedsci.2006.11.022

[147]

Alagbe, E.O., Schulze, H., & Adeola, O. (2023). Growth performance, nutrient digestibility, intestinal morphology, cecal mucosal cytokines and serum antioxidant responses of broiler chickens to dietary enzymatically treated yeast and coccidia challenge. Journal of Animal Science and Biotechnology, 14(1), 57. https://doi.org/10.1186/s40104-023-00846-z

[148]

Lin, Y., Teng, P.Y., & Olukosi, O.A. (2022). The effects of xylo-oligosaccharides on regulating growth performance, nutrient utilization, gene expression of tight junctions, nutrient transporters, and cecal short chain fatty acids profile in Eimeria-challenged broiler chickens. Poultry Science, 101(11), 102125. https://doi.org/10.1016/j.psj.2022.102125

[149]

Yuan, L., Li, W., Huo, Q., Du, C., Wang, Z., Yi, B., & Wang, M. (2018). Effects of xylo-oligosaccharide and flavomycin on the immune function of broiler chickens. PeerJ, 6, e4435. https://doi.org/10.7717/peerj.4435

[150]

Fernandez-Julia, P.J., Munoz-Munoz, J., & van Sinderen, D. (2021). A comprehensive review on the impact of β-glucan metabolism by Bacteroides and Bifidobacterium species as members of the gut microbiota. International Journal of Biological Macromolecules, 181, 877-889. https://doi.org/10.1016/j.ijbiomac.2021.04.069

[151]

Stier, H., Ebbeskotte, V., & Gruenwald, J. (2014). Immune-modulatory effects of dietary yeast beta-1,3/1,6-D-glucan. Nutrition Journal, 13(1), 38. https://doi.org/10.1186/1475-2891-13-38

[152]

Miyamoto, N., Mochizuki, S., & Sakurai, K. (2018). Designing an immunocyte-targeting delivery system by use of beta-glucan. Vaccine, 36(1), 186-189. https://doi.org/10.1016/j.vaccine.2017.11.053

[153]

Zhong, Y., Marungruang, N., Fåk, F., & Nyman, M. (2015). Effects of two whole-grain barley varieties on caecal SCFA, gut microbiota and plasma inflammatory markers in rats consuming low- and high-fat diets. British Journal of Nutrition, 113(10), 1558-1570. https://doi.org/10.1017/S0007114515000793

[154]

Plavcová, Z., Šalamúnová, P., Saloň, I., Štěpánek, F., Hanuš, J., & Hošek, J. (2019). Curcumin encapsulation in yeast glucan particles promotes its anti-inflammatory potential in vitro. International Journal of Pharmaceutics, 568, 118532. https://doi.org/10.1016/j.ijpharm.2019.118532

[155]

Vetvicka, V., Vannucci, L., & Sima, P. (2020). β-glucan as a new tool in vaccine development. Scandinavian Journal of Immunology, 91(2), e12833. https://doi.org/10.1111/sji.12833

[156]

Gani, A., Shah, A., Ahmad, M., Ashwar, B.A., & Masoodi, F.A. (2018). β-d-glucan as an enteric delivery vehicle for probiotics. International Journal of Biological Macromolecules, 106, 864-869. https://doi.org/10.1016/j.ijbiomac.2017.08.093

[157]

Levine, R., Horst, G., Tonda, R., Lumpkins, B., & Mathis, G. (2018). Evaluation of the effects of feeding dried algae containing beta-1,3-glucan on broilers challenged with Eimeria. Poultry Science, 97(10), 3494-3500. https://doi.org/10.3382/ps/pey227

[158]

Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., Canani, R.B., Flint, H.J., Salminen, S., Calder, P.C., & Sanders, M.E. (2014). Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506-514. https://doi.org/10.1038/nrgastro.2014.66

[159]

Neveling, D.P., & Dicks, L. M.T. (2021). Probiotics: An antibiotic replacement strategy for healthy broilers and productive rearing. Probiotics and Antimicrobial Proteins, 13(1), 1-11. https://doi.org/10.1007/s12602-020-09640-z

[160]

Sengupta, R., Altermann, E., Anderson, R.C., McNabb, W.C., Moughan, P.J., & Roy, N.C. (2013). The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediators of Inflammation, 2013, 237921. https://doi.org/10.1155/2013/237921

[161]

Qin, S., Wang, Y., Yang, M., Wang, P., Iqbal, M., Li, J., & Shen, Y. (2023). Lactobacillus plantarum A3 attenuates ulcerative colitis by modulating gut microbiota and metabolism. Animal Diseases, 3(1), 16. https://doi.org/10.1186/s44149-023-00073-z

[162]

Ma, L.-c., Zhao, H.-q., Wu, L.B., Cheng, Z.-l., & Liu, C. (2023). Impact of the microbiome on human, animal, and environmental health from a One Health perspective. Science in One Health, 2, 100037. https://doi.org/10.1016/j.soh.2023.100037

[163]

Dalloul, R.A., Lillehoj, H.S., Tamim, N.M., Shellem, T.A., & Doerr, J.A. (2005). Induction of local protective immunity to Eimeria acervulina by a Lactobacillus-based probiotic. Comparative Immunology, Microbiology and Infectious Diseases, 28(5-6), 351-361. https://doi.org/10.1016/j.cimid.2005.09.001

[164]

Lee, S., Lillehoj, H.S., Park, D.W., Hong, Y.H., & Lin, J.J. (2007). Effects of Pediococcus- and Saccharomyces-based probiotic (MitoMax) on coccidiosis in broiler chickens. Comparative Immunology, Microbiology and Infectious Diseases, 30(4), 261-268. https://doi.org/10.1016/j.cimid.2007.02.002

[165]

Memon, F.U., Yang, Y., Leghari, I.H., Lv, F., Soliman, A.M., Zhang, W., & Si, H. (2021). Transcriptome analysis revealed ameliorative effects of Bacillus based probiotic on immunity, gut barrier system, and metabolism of chicken under an experimentally induced Eimeria tenella infection. Genes, 12(4), 536. https://doi.org/10.3390/genes12040536

[166]

Saeeda, K., Chand, N., Khan, N.U., Saeed, M., & Khan, R.U. (2023). Dietary organic zinc and probiotic alleviate induced Eimeria tenella infection in Japanese quails model of coccidiosis. Tropical Animal Health and Production, 55(1), 37. https://doi.org/10.1007/s11250-022-03449-4

[167]

Giannenas, I., Tsalie, E., Triantafillou, E., Hessenberger, S., Teichmann, K., Mohnl, M., & Tontis, D. (2014). Assessment of probiotics supplementation via feed or water on the growth performance, intestinal morphology and microflora of chickens after experimental infection with Eimeria acervulina, Eimeria maxima and Eimeria tenella. Avian Pathology, 43(3), 209-216. https://doi.org/10.1080/03079457.2014.899430

[168]

Wang, X., Farnell, Y.Z., Kiess, A.S., Peebles, E.D., Wamsley, K. G.S., & Zhai, W. (2019). Effects of Bacillus subtilis and coccidial vaccination on cecal microbial diversity and composition of Eimeria-challenged male broilers. Poultry Science, 98(9), 3839-3849. https://doi.org/10.3382/ps/pez096

[169]

Wang, Y., & Gu, Q. (2010). Effect of probiotic on growth performance and digestive enzyme activity of Arbor Acres broilers. Research in Veterinary Science, 89(2), 163-167. https://doi.org/10.1016/j.rvsc.2010.03.009

[170]

Bai, K., Feng, C., Jiang, L., Zhang, L., Zhang, J., Zhang, L., & Wang, T. (2018). Dietary effects of Bacillus subtilis fmbj on growth performance, small intestinal morphology, and its antioxidant capacity of broilers. Poultry Science, 97(7), 2312-2321. https://doi.org/10.3382/ps/pey116

[171]

La Ragione, R.M., Casula, G., Cutting, S.M., & Woodward, M.J. (2001). Bacillus subtilis spores competitively exclude Escherichia coli O78:K80 in poultry. Veterinary Microbiology, 79(2), 133-142. https://doi.org/10.1016/s0378-1135(00)00350-3

[172]

Park, J.H., & Kim, I.H. (2014). Supplemental effect of probiotic Bacillus subtilis B2A on productivity, organ weight, intestinal Salmonella microflora, and breast meat quality of growing broiler chicks. Poultry Science, 93(8), 2054-2059. https://doi.org/10.3382/ps.2013-03818

[173]

Cai, H., Luo, S., Zhou, Q., Yan, Z., Liu, Q., Kang, Z., Liao, S., Li, J., Lv, M., Lin, X., Hu, J., Yu, S., Zhang, J., Qi, N., & Sun, M. (2022). Effects of Bacillus subtilis and coccidiosis vaccine on growth indices and intestinal microbiota of broilers. Poultry Science, 101(11), 102091. https://doi.org/10.1016/j.psj.2022.102091

[174]

Wang, L., Liu, C., Chen, M., Ya, T., Huang, W., Gao, P., & Zhang, H. (2015). A novel Lactobacillus plantarum strain P-8 activates beneficial immune response of broiler chickens. International Immunopharmacology, 29(2), 901-907. https://doi.org/10.1016/j.intimp.2015.07.024

[175]

Cai, H., Qi, N., Li, J., Lv, M., Lin, X., Hu, J., Zhang, J., Liao, S., & Sun, M. (2022). Research progress of the avian coccidiosis vaccine. Veterinary Vaccine, 1(1), 100002. https://doi.org/10.1016/j.vetvac.2022.100002

[176]

Park, I., Goo, D., Nam, H., Wickramasuriya, S.S., Lee, K., Zimmerman, N.P., Smith, A.H., Rehberger, T.G., & Lillehoj, H.S. (2021). Effects of dietary maltol on innate immunity, gut health, and growth performance of broiler chickens challenged with Eimeria maxima. Frontiers in Veterinary Science, 8, 667425. https://doi.org/10.3389/fvets.2021.667425

[177]

Salminen, S., Collado, M.C., Endo, A., Hill, C., Lebeer, S., Quigley, E. M.M., Sanders, M.E., Shamir, R., Swann, J.R., Szajewska, H., & Vinderola, G. (2021). The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology, 18(9), 649-667. https://doi.org/10.1038/s41575-021-00440-6

[178]

Liu, C., Ma, N., Feng, Y., Zhou, M., Li, H., Zhang, X., & Ma, X. (2023). From probiotics to postbiotics: Concepts and applications. Animal Research and One Health, 1(1), 92-114. https://doi.org/10.1002/aro2.7

[179]

Abbasi, A., Rahbar Saadat, T., & Rahbar Saadat, Y. (2022). Microbial exopolysaccharides-β-glucans-as promising postbiotic candidates in vaccine adjuvants. International Journal of Biological Macromolecules, 223, 346-361. https://doi.org/10.1016/j.ijbiomac.2022.11.003

[180]

Klobucher, K.N., Badger, R., Foxall, T., & Erickson, P.S. (2022). Short communication: Effect of sodium butyrate, monensin, and butyric acid on the viability of Eimeria bovis sporozoites and their degree of damage to a bovine epithelial cell line. Journal of Animal Science, 100(12), skac360. https://doi.org/10.1093/jas/skac360

[181]

Ni, M., Wang, Z., Li, Z., Chen, M., He, H., Cai, H., Chen, Z., Li, M., & Xu, H. (2024). Dietary supplement of sodium butyrate improves the growth performance and intestinal health by targeting Wnt/β-catenin signaling pathway in rabbits. Animal Research and One Health, 2024, 1-16. https://doi.org/10.1002/aro2.71

[182]

Park, I., Nam, H., Lee, Y., Wickramasuriya, S.S., Smith, A.H., Rehberger, T.G., & Lillehoj, H.S. (2024). The effect of gut microbiota-derived carnosine on mucosal integrity and immunity in broiler chickens challenged with Eimeria maxima. Poultry Science, 103(8), 103837. https://doi.org/10.1016/j.psj.2024.103837

RIGHTS & PERMISSIONS

2024 The Author(s). Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/