Effect of terracotta drinker and/or water addition of ASPRO-C plus on behavior, growth, and physiological response of broiler chickens exposed to high temperature

Tadondjou Tchingo Cyrille d’Alex , Edmond Gilhoube , Denis Djaomanwe , Narcisse Ledang , Roger Ponka , Ferdinand Ngoula , Alexis Teguia

Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (2) : 206 -216.

PDF
Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (2) : 206 -216. DOI: 10.1002/aro2.94
ARTICLE

Effect of terracotta drinker and/or water addition of ASPRO-C plus on behavior, growth, and physiological response of broiler chickens exposed to high temperature

Author information +
History +
PDF

Abstract

This study aimed to evaluate the effects of a terracotta drinker and/or water supplementation with ASPRO-C Plus on the zootechnical performance of broiler chickens reared in a hot environment. A total of 160 Cobb 500 broiler chicks of 15 days old (240.2 ± 39.82 g) were divided into four treatment groups in a 2 x 2 factorial arrangement of drinker type (plastic or terracotta) and water with or without ASPRO-C Plus (1 g/L) supplementation, each consisting of 4 replicate pens. Respiratory rate, water intake, feed intake, and live body weight were recorded weekly. At 49 days old, 12 birds per group were randomly selected, fasted for 12 h, weighed, and slaughtered for carcass evaluation and blood collection. The respiration rate of broilers decreased significantly (p < 0.01) with the terracotta drinker as compared to the plastic drinker. The water intake, the feed intake and the body weight gain increased significantly (p < 0.01) with the terracotta drinker as compared to the plastic drinker. The water addition of ASPRO-C Plus significantly increased (p < 0.01) the relative weight of abdominal fat and spleen in broilers. The alpha-amylase activity was significantly decreased (p < 0.01) with the water addition of ASPRO-C Plus. The serum content of total cholesterol was significantly increased (p < 0.01) with the terracotta drinker. It can be concluded that ASPRO-C Plus can slightly improve liveability, but using the terracotta drinker can be more efficient in reducing the behavioral response to heat stress and can improve the growth performance.

Keywords

ASPRO-C plus / behavior / broiler-chicken / growth / terracotta drinker

Cite this article

Download citation ▾
Tadondjou Tchingo Cyrille d’Alex, Edmond Gilhoube, Denis Djaomanwe, Narcisse Ledang, Roger Ponka, Ferdinand Ngoula, Alexis Teguia. Effect of terracotta drinker and/or water addition of ASPRO-C plus on behavior, growth, and physiological response of broiler chickens exposed to high temperature. Animal Research and One Health, 2025, 3(2): 206-216 DOI:10.1002/aro2.94

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdel-Moneim, A. M.E., Shehata, A.M., Khidr, R.E., Paswan, V.K., Ibrahim, N.S., El-Ghoul, A.A., Aldhumri, S.A., Gabr, S.A., Mesalam, N.M., Elbaz, A.M., Elsayed, M.A., Wakwak, M.M., & Ebeid, T.A. (2021). Nutritional manipulation to combat heat stress in poultry-A comprehensive review. Journal of Thermal Biology, 98, 102915. https://doi.org/10.1016/j.jtherbio.2021.102915

[2]

Attia, Y., Al-Harthi, M., El-Shafey, A., Rehab, Y., & Kim, W. (2017). Enhancing tolerance of broiler chickens to heat stress by supplementation with vitamin E, vitamin C and/or probiotics. Annals of Animal Science, 17(4), 1155-1169. https://doi.org/10.1515/aoas-2017-0012

[3]

Attia, Y.A., & Hassan, S.S. (2017). Broiler tolerance to heat stress at various dietary protein/energy levels. European Poultry Science, 81. ISSN 1612-9199, Verlag Ulmer, Stuttgart. https://doi.org/10.1399/eps.2017.171

[4]

Alhenaky, A., Abdelqader, A., Abuaja, mieh M., & Al-Fa taftah, A.-R. (2017). The effect of heat stress on intestinal integrity and Salmonella invasion in broiler birds. Journal of Thermal Biology, 70(Pt B), 9-14. https://doi.org/10.1016/j.jtherbio.2017.10.015

[5]

Saracila, M., Panaite, T.D., Papuc, C.P., & Criste, R.D. (2021). Heat stress in broiler chickens and the effect of dietary polyphenols, with special reference to willow (salix spp.) bark supplements—A review. Antioxidants, 10(5), 686. https://doi.org/10.3390/antiox10050686

[6]

Wasti, S., Sah, N., & Mishra, B. (2020). Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals, 10(8), 1266. https://doi.org/10.3390/ani10081266

[7]

Ward, D., Dam, A., & Creighton, C. (2020). Le stress thermique chez les poules pondeuses commerciales. In Fiche technique, NO 20-026, AGDEX 451/20. Publié par le Ministère de l’Agriculture, l’Alimentation et des Affaires rurales de l’Ontario. Imprimeur de la reine pour l’Ontario. ISSN 1198-7138.

[8]

Kaya, M., & Dereli Fidan, E. (2023). The effect of drinking water temperature and stocking density on broiler performance, meat quality and some behavioral traits at high ambient temperature. Journal of the Hellenic Veterinary Medical Society, 74(1), 5315-5324. https://doi.org/10.12681/jhvms.29349

[9]

Sugito, S., Etriwati, E., Akmal, M., Rahmi, E., Delima, M., Muchlisin, Z.A., & Hasan, D.I. (2021). Immunohistochemical expression of AQP2 and HSP70 in broiler kidney tissue treated with Salix tetrasperma Roxb. Extract under heat exposure. The Scientific World Journal, 18, 8711286-8711289. PMCID: PMC8545545. https://doi.org/10.1155/2021/8711286

[10]

Chand, N., Naz, S., Maris, H., Khan, R.U., Khan, S., & Qureshi, M.S. (2017). Effect of betaine supplementation on the performance and immune response of heat stressed broilers. Pakistan Journal of Zoology, 49(5), 1857-1862. https://doi.org/10.17582/journal.pjz/2017.49.5.1857.1862

[11]

Abioja, M.O., Osinowo, O.A., Smith, O.F., Eruvbetine, D., & Abiona, J.A. (2011). Evaluation of cold water and vitamin C on broiler growth during hot-dry season in the humid tropical conditions of south-western Nigeria. Archivos de Zootecnia, 60(232), 1095-1103. https://doi.org/10.4321/S0004-0592201100025

[12]

Park, S., Park, B., & Hwangbo, J. (2015). Effect of cold water and inverse lighting on growth performance of broiler chickens under extreme heat stress. Journal of Environmental Biology, 36(4), 865-873. PMID.

[13]

Saeed, M., Abbas, G., Alagawany, M., Kamboh, A.A., Abd El-Hack, M.E., Khafaga, A.F., & Chao, S. (2019). Heat stress management in poultry farms: A comprehensive overview. Journal of Thermal Biology, 84, 414-425. https://doi.org/10.1016/j.jtherbio.2019.07.025

[14]

Pérez, M., De Basilio, V., Colina, Y., Oliveros, Y., Yahav, S., Picard, M., & Bastianelli, D. (2006). Evaluation du niveau de stress thermique par mesure de la température corporelle et du niveau d’hyperventilation chez le poulet de chair dans des conditions de production au Venezuela. Revue Élev. Méd. vét. Pays trop., 59(1-4), 81-90. https://doi.org/10.19182/remvt.9959

[15]

Campbell, J.R., Kenealy, M.D., & Campbell, K.L. (2003). Animal sciences: The biology, care and production of domestic animals ( 4th ed., p. 509p). McGraw Hill.

[16]

Lal, B.A., Samuel, D.V., & Beera, V. (2011). Evaporative cooling system for storage of fruits and vegetables - a review. Journal of Food Science and Technology, 50(3), 429-442. https://doi.org/10.1007/s13197-011-0311-6

[17]

Makule, E., Dimoso, N., & Tassou, S. (2022). Precooling and cold storage methods for fruits and vegetables in sub-saharian Africa - a Review. Horticulturae, 8(9), 776. https://doi.org/10.3390/horticulturae8090776

[18]

Brugaletta, G., Teyssier, J.-R., Rochell, S.J., Dridi, S., & Sirri, F. (2022). A review of heat stress in chickens. Part I: Insights into physiology and gut health. Frontiers in Physiology, 13, 934381. https://doi.org/10.3389/fphys.2022.934381

[19]

Erensoy, K., Noubandiguim, M., Sarica, M., & Aslan, R. (2021). The effect of intermittent feeding and cold water on performance and carcass trait of broilers reared under daily heat stress. Asian-Australasian Journal of Animal Sciences, 33(12), 2031-2038. https://doi.org/10.5713/ajas.19.09808

[20]

Bruno, L. D.G., Maiorka, A., Macari, M., Furlan, R.L., & Givisiez, P. E.N. (2011). Water intake behaviour of broiler chickens exposed to heat stress and drinking from bell or and nipple drinkers. Brazilian Journal of Poultry Science, 13(2), 147-152. https://doi.org/10.1590/s1516-635x2011000200009

[21]

Ma, B., Zhang, L., Li, J., Xing, T., Jiang, Y., & Gao, F. (2021). Heat stress alters muscle protein and amino acid metabolism and accelerates liver gluconeogenesis for energy supply in broilers. Poultry Science, 100(1), 215-223. https://doi.org/10.1016/j.psj.2020.09.090

[22]

Qaid, M.M., & Al-Garadi, M.A. (2021). Protein and amino acid metabolism in poultry during and after heat stress: A review. Animals, 11(4), 1167. PMCID: PMC8074156. https://doi.org/10.3390/ani11041167

[23]

Eltahan, H.M., Kang, C.W., Chowdhury, V.S., Eltahan, H.M., Abdel-Maksoud, M.A., Mubarak, A., & Lim, C.I. (2023). Cold drinking water boosts the cellular and humoral immunity in heat-exposed laying hens. Animals, 13(4), 580. https://doi.org/10.3390/ani13040580

[24]

Sahin, K., Onderci, M., Sahin, N., Gursu, M.F., Khachik, F., & Kucuk, O. (2006). Effects of lycopene supplementation on antioxidant status, oxidative stress, performance and carcass characteristics in heat-stressed Japanese quail. Journal of Thermal Biology, 31(4), 307-312. https://doi.org/10.1016/j.jtherbio.2005.12.006

[25]

Habashy, W.S., Milfort, M.C., Fuller, A.L., Attia, Y.A., Rekaya, R., & Aggrey, S.E. (2017). Effect of heat stress on protein utilization and nutrient transporters in meat-type chickens. International Journal of Biometeorology, 61(12), 2111-2118. Epub 2017 Aug 10. https://doi.org/10.1007/s00484-017-1414-1

[26]

Teyssier, J.-R., Brugaletta, G., Sirri, F., Dridi, S., & Rochell, S.J. (2022). A review of heat stress in chickens. Part II: Insights into protein and energy utilization and feeding. Frontiers in Physiology, 13, 943612. https://doi.org/10.3389/fphys.2022.943612

[27]

Sun, S., Li, B., Wu, M., Deng, Y., Li, J., Xiong, Y., & He, S. (2023). Effect of dietary supplemental vitamin C and betaine on the growth performance, humoral immunity, immune organ index, and antioxidant status of broilers under heat stress. Tropical Animal Health and Production, 55(2), 96. https://doi.org/10.1007/s11250-023-03500-y

[28]

Hassan, A.A., & Asim, R.A. (2020). Effect of vitamin C and acetylsalicyclic acid supplementation on some haematological value, heat shock protein 70 concentration and growth hormone level in broiler exposed to heat stress. Iraqi Journal of Veterinary Sciences, 34(2), 357-363. https://doi.org/10.33899/ijvs.2019.125950.1195

[29]

Attia, Y.A., Hassan, R.A., Shehatta, M.H., & Abd El-Hady, S.B. (2005). Growth, carcass quality and serum constituents of slow growing chicks as affected by betaine addition to diets containing 2. Different levels of methionine. International Journal of Poultry Science, 4(11), 856-865. https://doi.org/10.3923/ijps.2005.856.865

[30]

Jiang, Z., Zhou, Y., Lu, F., Han, Z., & Wang, T. (2008). Effects of different levels of supplementary alpha-amylase on digestive enzyme activities and pancreatic amylase mRNA expression of young broilers. Asian-Australasian Journal of Animal Sciences, 21(1), 97-102. https://doi.org/10.5713/ajas.2008.70110

[31]

Al-Sagan, A.A., Al-Yemni, A.H., Abudabos, A.M., Al-Abdullatif, A.A., & Hussein, E.O. (2021). Effect of different dietary betaine fortifications on performance, carcass traits, meat quality, blood biochemistry, and hematology of broilers exposed to various temperature patterns. Animals, 11(6), 1555. https://doi.org/10.3390/ani11061555

[32]

Abioja, M.O., Osinowo, O.A., Smith, O.F., & Eruvbetine, D. (2013). Physiological and haematological responses of broiler chickens offered cold water and vitamin C during hot-dry season. Nigerian Journal of Animal Production, 40(1), 24-36. https://doi.org/10.51791/njap.v40i1.611

RIGHTS & PERMISSIONS

2024 The Author(s). Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

8

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/