The E-volution in swine nutrition: Current perspectives on vitamin E

Yauheni Shastak , Wolf Pelletier

Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (1) : 2 -30.

PDF
Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (1) : 2 -30. DOI: 10.1002/aro2.93
REVIEW

The E-volution in swine nutrition: Current perspectives on vitamin E

Author information +
History +
PDF

Abstract

This review provides an in-depth analysis of vitamin E’s multifaceted role in swine nutrition, incorporating both traditional insights and contemporary research. It begins with an exploration of vitamin E from an evolutionary perspective, followed by a detailed examination of its absorption, metabolism, and excretion in swine. The review emphasizes the micronutrient’s critical functions in swine physiology, particularly its antioxidant properties and its emerging links to epigenetics, which include deoxyribonucleic acid methylation, histone modification, and noncoding ribonucleic acid regulation. The interactions of vitamin E with other dietary components are discussed, along with established nutritional requirements and current recommendations for supplementation. Additionally, the health benefits and performance improvements associated with vitamin E are presented, emphasizing its importance in immune function, growth, and meat quality. Despite extensive research, the review identifies gaps in understanding the bioavailability and long-term impacts of different vitamin E isoforms and supra-nutritional supplementation levels. It concludes with a discussion of research gaps and future directions, particularly the need for studies on the long-term effects of high-dose vitamin E supplementation and the influence of environmental factors on its metabolism. Through this comprehensive synthesis, this study aims to provide a holistic understanding of vitamin E’s essential contributions to swine health and nutrition, with the goal of informing better dietary practices and enhancing swine productivity.

Keywords

α-tocopherol / deficiency / health / requirement / swine / vitamin E

Cite this article

Download citation ▾
Yauheni Shastak, Wolf Pelletier. The E-volution in swine nutrition: Current perspectives on vitamin E. Animal Research and One Health, 2025, 3(1): 2-30 DOI:10.1002/aro2.93

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

NASEM (National Academies of Sciences, Engineering, and Medicine). (2012). Nutrient requirements of swine (12th rev). National Academy Press.

[2]

Shastak, Y., Obermueller-Jevic, U., & Pelletier, W. (2023). A century of vitamin E: Early milestones and future directions in animal nutrition. Agriculture, 13(8), 1526.

[3]

Doğru Pekiner, B. (2003). Vitamin E as an antioxidant. Journal of Faculty of Pharmacy of Ankara University, 32(4), 243-267.

[4]

Amadori, M., & Zanotti, C. (2016). Immunoprophylaxis in intensive farming systems: The way forward. Veterinary Immunology and Immunopathology, 181, 2-9.

[5]

Shastak, Y., & Pelletier, W. (2023). Vitamin A supply in swine production: A review of current science and practical considerations. Applied Animal Science, 39(5), 289-305.

[6]

Reboul, E. (2017). Vitamin E bioavailability: Mechanisms of intestinal absorption in the spotlight. Antioxidants, 6(4), 95.

[7]

Peplowski, M. A., Mahan, D. C., Murray, F. A., Moxon, A. L., Cantor, A. H., & Ekstrom, K. E. (1981). Effect of dietary and injectable vitamin E and selenium in weanling swine antigenically challenged with sheep red blood cells. Journal of Animal Science, 51(2), 344-351.

[8]

Pinelli-Saavedra, A. (2003). Vitamin E in immunity and reproductive performance in pigs. Reproduction Nutrition Development, 43(5), 397-408.

[9]

Larsen, H. J., & Tollersrud, S. (1981). Effect of dietary vitamin E and selenium on the phytohaemagglutinin response of pig lymphocytes. Research in Veterinary Science, 31(3), 301-305.

[10]

Jensen, M., Fossum, C., Ederoth, M., & Hakkarainen, R. V. (1988). The effect of vitamin E on the cell-mediated immune response in pigs. Zentralblatt fur Veterinarmedizin Reihe B, 35(1-10), 549-555.

[11]

Fragou, S., Balaskas, K., Fegeros, A., & Politis, I. (2006). Effect of Vitamin E supplementation on lymphocyte distribution in gut-associated lymphoid tissues obtained from weaned piglets. Journal of Veterinary Medicine A, Physiology, Pathology, Clinical Medicine, 53(7), 327-333.

[12]

Lewis, E. D., Meydani, S. N., & Wu, D. (2019). Regulatory role of vitamin E in the immune system and inflammation. IUBMB Life, 71(4), 487-494.

[13]

Oldfield, J. E. (2003). Some recollections of early swine research with selenium and vitamin E. Journal of Animal Science, 81, E145-E148.

[14]

Umesiobi, D. O. (2009). Vitamin E supplementation to sows and effects on fertility rate and subsequent body development of their weanling piglets. Journal of Agriculture and Rural Development in the Tropics and Subtropics, 110(2), 155-168.

[15]

Lugar, D. W., Harlow, K. E., Hundley, J., Goncalves, M., Bergstrom, J., & Stewart, K. R. (2019). Effects of increased levels of supplemental vitamins during the summer in a commercial artificial insemination boar stud. Animal, 13(11), 2556-2568.

[16]

Brigelius-Flohé R. (2021). Vitamin E research: Past, now and future. Free Radical Biology and Medicine, 177, 381-390.

[17]

Ungurianu, A., Zanfirescu, A., Niţulescu, G., & Margină D. (2021). Vitamin E beyond its antioxidant label. Antioxidants, 10(5), 634.

[18]

Liao, S., Omage, S. O., Börmel, L., Kluge, S., Schubert, M., Wallert, M., & Lorkowski, S. (2022). Vitamin E and metabolic health: Relevance of interactions with other micronutrients. Antioxidants, 11(9), 1785.

[19]

Liao, M., Ren, Z., & Miao, Y. (2022). Identification of differentially expressed miRNAs in porcine adipose tissues and evaluation of their effects on feed efficiency. Genes, 13(12), 2406.

[20]

Zingg, J.-M. (2019). Vitamin E: Regulatory role on signal transduction. IUBMB Life, 71(4), 456-478.

[21]

Kim, H.-K., & Han, S. N. (2019). Vitamin E: Regulatory role on gene and protein expression and metabolomics profiles. IUBMB Life, 71(4), 442-455.

[22]

Trugilho, L., Alvarenga, L., Cardozo, L. F., Barboza, I., Leite, M., Jr., Fouque, D., & Mafra, D. (2024). Vitamin E and conflicting understandings in noncommunicable diseases: Is it worth supplementing? Clinical Nutrition ESPEN, 59, 343-354.

[23]

Nafstad, I., & Tollersrud, S. (1970). The vitamin E-deficiency syndrome in pigs. I. Pathological changes. Acta Veterinaria Scandinavica, 11(3), 452-480.

[24]

Olson, R. E. (1973). Vitamin E and its relation to heart disease. Circulation, 48(1), 179-184.

[25]

Matthews, S. G., Miller, A. L., Plötz, T., & Kyriazakis, I. (2017). Automated tracking to measure behavioural changes in pigs for health and welfare monitoring. Science Reports, 7(1), 17582.

[26]

Funk, T. H., Rohrer, G. A., Brown-Brandl, T. M., & Keel, B. N. (2024). Online feeding behavior monitoring of individual group-housed grow-finish pigs using a low-frequency RFID electronic feeding system. Translational Animal Science, 8, txae051.

[27]

Evans, H. M., & Bishop, K. S. (1922). On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science, 56(1458), 650-665.

[28]

Goettsch, M., & Pappenheimer, A. M. (1931). Nutritional muscular dystrophy in the Guinea pig and rabbit. Journal of Experimental Medicine, 54(2), 145-165.

[29]

Pappenheimer, A. M., & Goettsch, M. (1931). A cerebellar disorder in chicks, apparently of nutritional origin. Journal of Experimental Medicine, 53(1), 11-26.

[30]

Grandel, F. (1939). Das Vitamin E, seine Bedeutung bei Mensch, Tier und Pflanze. Angewandte Chemie, 24, 420-426.

[31]

Pappenheimer, A. M., & Goettsch, M. (1941). Death of embryos in Guinea pigs on diets low in vitamin E. Proceedings of the Society for Experimental Biology and Medicine, 47(2), 268-270.

[32]

Gitler, C., Sunde, M. L., & Baumann, C. A. (1958). Effect of certain necrosis-preventing factors on hemolysis in vitamin E-deficient rats and chicks. Journal of Nutrition, 65(3), 397-407.

[33]

Lannek, N., Lindberg, P., Nilsson, G., Nordström, G., & Orstadius, K. (1961). Production of vitamin E-deficiency and muscular dystrophy in pigs. Research in Veterinary Science, 2(1), 67-72.

[34]

Lindberg, P., & Orstadius, K. (1961). Production of muscular dystrophy in pigs by feeding cottonseed oil. Acta Veterinaria Scandinavica, 2(1), 226-235.

[35]

Harding, J. D. J. (1960). Some observations on the histopathology of mulberry heart disease in the pig. Res. Veterinary Science, 1, 129-132.

[36]

Grant, C. A. (1961). Morphological and aetiological studies of dietetic microangiopathy in pigs (“Mulberry heart”). Acta Veterinaria Scandinavica, 2(3), 107.

[37]

Shastak, Y., Pelletier, W., & Kuntz, A. (2024). Insights into analytical precision: Understanding the factors influencing accurate vitamin A determination in various samples. Analytica, 5(1), 54-73.

[38]

Asghar, A., Gray, J. I., Booren, A. M., Gomaa, E. A., Abouzied, M. M., Miller, E. R., & Buckley, D. J. (1992). Influence of supranutritional dietary vitamin E levels on subcellular deposition of alpha-tocopherol in the muscle on pork quality. Journal of the Science of Food and Agriculture, 57(1), 31-41.

[39]

Cheah, K. S., Cheah, A. M., & Krausgrill, D. I. (1995). Effect of dietary supplementation of vitamin E op pig meat quality. Meat Science, 39(2), 255-264.

[40]

Cannon, J. E., Morgan, J. B., Schmidt, G. R., Tatum, J. D., Sofos, J. N., Smith, G. C., Delmore, R. J., & Williams, S. N. (1996). Growth and fresh meat quality characteristics of pigs supplemented with vitamin E. Journal of Animal Science, 74(1), 98-105.

[41]

Hoving-Bolink, A. H., Eikelenboom, G., van Diepen, J. T. M., Jongbloed, A. W., & Houben, J. H. (1998). Effect of dietary vitamin E supplementation on pork quality. Meat Science, 49(2), 205-212.

[42]

O’Sullivan, M. G., Byrne, D. V., Stagsted, J., Andersen, H. J., & Martens, M. (2002). Sensory colour assessment of fresh meat from pigs supplemented with iron and vitamin E. Meat Science, 60(3), 253-265.

[43]

Rosenvold, K., Lærke, H. N., Jensen, S. K., Karlsson, A. H., Lundström, K., & Andersen, H. J. (2002). Manipulation of critical quality indicators and attributes in pork through vitamin E supplementation, muscle glycogen reducing finishing feeding and pre-slaughter stress. Meat Science, 62(4), 485-496.

[44]

Isabel, B., Lopez-Bote, C. J., de la Hoz, L., Timón, M., Garcı X. A. C., & Ruiz, J. (2003). Effects of feeding elevated concentrations of monounsaturated fatty acids and vitamin E to swine on characteristics of dry cured hams. Meat Science, 64(4), 475-482.

[45]

Daza, A., Rey, A. I., Ruiz, J., & Lopez-Bote, C. J. (2005). Effects of feeding in free-range conditions or in confinement with different dietary MUFA/PUFA ratios and α-tocopheryl acetate, on antioxidants accumulation and oxidative stability in Iberian pigs. Meat Science, 69(1), 151-163.

[46]

Pharazyn, A., Den Hartog, L. A., & Aherne, F. X. (1990). Vitamin E and its role in the nutrition of the gilt and sow: A review. Livestock Production Science, 24, 1-13.

[47]

Hidiroglou, N., Cave, N., Atwall, A. S., Farnworth, E. R., & McDowell, L. R. (1992). Comparative vitamin E requirements and metabolism in livestock. Annals of Veterinary Research, 23(4), 337-359.

[48]

Mena Canata, D. A., Benfato, M. S., Pereira, F. D., Pereira, M. J. R., & Rampelotto, P. H. (2024). Distribution and utilization of vitamin E in different organs of wild bats from different food groups. Life, 14(2), 266.

[49]

Suttle, N. (2016). Ruminant nutrition - Digestion and absorption of minerals and vitamins. In Reference module in food science. Elsevier.

[50]

Liu, K., Zhang, Y., Yu, Z., Xu, Q., Zheng, N., Zhao, S., Huang, G., & Wang, J. (2021). Ruminal microbiota-host interaction and its effect on nutrient metabolism. Animal Nutrition, 7(1), 49-55.

[51]

Chishti, G. A., Carvalho, P. H. V., Pinto, A. C., Silva, F. A. S., & Felix, T. L. (2019). Efficacy of sheep as a digestibility model for cattle when fed concentrate-based or forage-based diets. Translational Animal Science, 3(4), 1106-1111.

[52]

Tedeschi, L. O., Molle, G., Menendez, H. M., Cannas, A., & Fonseca, M. A. (2019). The assessment of supplementation requirements of grazing ruminants using nutrition models. Translational Animal Science, 3(2), 811-828.

[53]

Shastak, Y., & Pelletier, W. (2023). Balancing vitamin A supply for cattle: A review of the current knowledge. In Advances in animal science and zoology 21. Nova Science Publishers. Retrieved from https://novapublishers.com/wp-content/uploads/2023/11/Advances-in-Animal-Science-and-Zoology.-Volume-21-Chapter-2.pdf

[54]

Shastak, Y., & Pelletier, W. (2024). Review of liquid vitamin A and E formulations in veterinary and livestock production: Applications and perspectives. Veterinary Sciences, 11(9), 421.

[55]

Mishra, B., & Jha, R. (2019). Oxidative stress in the poultry gut: Potential challenges and interventions. Frontiers in Veterinary Science, 6, 60.

[56]

Oke, O., Akosile, O., Oni, A., Opowoye, I., Ishola, C., Adebiyi, J., Odeyemi, A., Adjei-Mensah, B., Uyanga, V., & Abioja, M. (2024). Oxidative stress in poultry production. Poultry Science, 103(9), 104003.

[57]

Quaresma, M. A., Alves, S. P., Trigo-Rodrigues, I., Pereira-Silva, R., Santos, N., Lemos, J. P., Barreto, A. S., & Bessa, R. J. (2011). Nutritional evaluation of the lipid fraction of feral wild boar (Sus scrofa scrofa) meat. Meat Science, 89(4), 457-461.

[58]

Pedrazzoli, M., Dal Bosco, A., Castellini, C., Ranucci, D., Mattioli, S., Pauselli, M., & Roscini, V. (2017). Effect of age and feeding area on meat quality of wild boars. Italian Journal of Animal Science, 16(3), 353-362.

[59]

Miller, E. R., & Kornegay, E. T. (1983). Mineral and vitamin nutrition of swine. Journal of Animal Science, 57(Suppl 2), 315-329.

[60]

Lauridsen, C. (2010). Evaluation of the effect of increasing dietary vitamin E in combination with different fat sources on performance, humoral immune responses and antioxidant status of weaned pigs. Animal Feed Science and Technology, 158(1-2), 85-94.

[61]

Santos, R. K., Novais, A., Borges, D., Alves, J., Dario, J., Frederico, G., Pierozan, C. R., Batista, J. P., Pereira, M. Jr., & Silva, C. (2020). Increased vitamin supplement to sows, piglets and finishers and the effect in productivity. Animal, 14(1), 86-94.

[62]

Hermesch, S. (2004). Genetic improvement of lean meat growth and feed efficiency in pigs. Australian Journal of Experimental Agriculture, 44(5), 1-9.

[63]

Solanes, F. X., Reixach, J., Tor, M., Tibau, J., Estany, J., Plastow, G., & Bidanel, J. P. (2009). Genetic correlations and expected response for intramuscular fat content in a Duroc pig line. Livestock Science, 123(1), 63-69.

[64]

van Marle-Köster, E., & Visser, C. (2021). Unintended consequences of selection for increased production on the health and welfare of livestock. Archives of Animal Breeding, 64(1), 177-185.

[65]

Veloso, R. C., Duarte, M. S., Silva, F. F., Saraiva, A., Guimarães, S. E. F., Chizzotti, M. L., Camargo, E. G., & Lopes, P. S. (2019). Effects of nutritional plans and genetic groups on performance, carcass and meat quality traits of finishingpigs. Food Science and Technology, 39(3), 538-554.

[66]

Brambilla, G., Civitareale, C., Ballerini, A., Fiori, M., Amadori, M., Archetti, L. I., Regini, M., & Betti, M. (2002). Response to oxidative stress as a welfare parameter in swine. Redox Report, 7(3), 159-163.

[67]

Traber, M. G., & Bruno, R. S. (2020). Vitamin E. In Present knowledge in nutrition (pp. 115-136). Academic Press.

[68]

Li, Q., Yang, S., Chen, F., Guan, W., & Zhang, S. (2021). Nutritional strategies to alleviate oxidative stress in sows. Animal Nutrition, 9, 60-73.

[69]

Moreira, I., & Mahan, D. C. (2002). Effect of dietary levels of vitamin E (all-rac-tocopheryl acetate) with or without added fat on weanling pig performance and tissue α-tocopherol concentration. Journal of Animal Science, 80(3), 663-669.

[70]

Kim, J. C., Jose, C. G., Trezona, M., Moore, K. L., Pluske, J. R., & Mullan, B. P. (2015). Supra-nutritional vitamin E supplementation for 28 days before slaughter maximises muscle vitamin E concentration in finisher pigs. Meat Science, 110, 270-277.

[71]

Wang, L., Xu, X., Su, G., Shi, B., & Shan, A. (2017). High concentration of vitamin E supplementation in sow diet during the last week of gestation and lactation affects the immunological variables and antioxidative parameters in piglets. Journal of Dairy Research, 84(1), 8-13.

[72]

Wang, D., Jang, Y. D., Kelley, M., Rentfrow, G. K., Azain, M. J., & Lindemann, M. D. (2023). Effects of multiple vitamin E levels and two fat sources in diets for swine fed to heavy slaughter weight of 150 kg: II. Tissue fatty acid profile, vitamin E concentrations, immune capacity, and antioxidant capacity of plasma and tissue. Translational Animal Science, 7(1), txad087.

[73]

Jiang, Q. (2022). Metabolism of natural forms of vitamin E and biological actions of vitamin E metabolites. Free Radical Biology and Medicine, 179, 375-387.

[74]

Rimbach, G., Moehring, J., Huebbe, P., & Lodge, J. K. (2010). Gene-regulatory activity of α-tocopherol. Molecules, 15(3), 1746-1761.

[75]

Borel, P., & Desmarchelier, C. (2016). Genetic variations involved in vitamin E status. International Journal of Molecular Sciences, 17(12), 2094.

[76]

Niforou, A., Konstantinidou, V., & Naska, A. (2020). Genetic variants shaping inter-individual differences in response to dietary intakes-A narrative review of the case of vitamins. Frontiers in Nutrition, 7, 558598.

[77]

Galli, F., Bonomini, M., Bartolini, D., Zatini, L., Reboldi, G., Marcantonini, G., Gentile, G., Sirolli, V., & Di Pietro, N. (2022). Vitamin E (Alpha-Tocopherol) metabolism and nutrition in chronic kidney disease. Antioxidants, 11(5), 989.

[78]

Hynd, P. I. (2019). Digestion in the mono-gastric animal. In Animal nutrition: From theory to practice (pp. 42-63). CSIRO Publishing.

[79]

EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). (2010). Scientific Opinion on the safety and efficacy of vitamin E as a feed additive for all animal species. EFSA Journal, 8(6), 1635.

[80]

Reboul, E. (2019). Vitamin E intestinal absorption: Regulation of membrane transport across the enterocyte. IUBMB Life, 71(4), 416-423.

[81]

Reboul, E., Soayfane, Z., Goncalves, A., Cantiello, M., Bott, R., Nauze, M., Tercé F., Collet, X., & Coméra, C. (2012). Respective contributions of intestinal Niemann-Pick C1-like 1 and scavenger receptor class B type I to cholesterol and tocopherol uptake: In vivo v. in vitro studies. British Journal of Nutrition, 107(9), 1296-1304.

[82]

Schmölz, L., Birringer, M., Lorkowski, S., & Wallert, M. (2016). Complexity of vitamin E metabolism. World Journal of Biological Chemistry, 7(1), 14-43.

[83]

Yang, H., Mahan, D. C., Hill, D. A., Shipp, T. E., Radke, T. R., & Cecava, M. J. (2009). Effect of vitamin E source, natural versus synthetic, and quantity on serum and tissue α-tocopherol concentrations in finishing swine. Journal of Animal Science, 87(12), 4057-4063.

[84]

van Kempen, T. A. T. G., Reijersen, M. H., de Bruijn, C., De Smet, S., Michiels, J., Traber, M. G., & Lauridsen, C. (2016). Vitamin E plasma kinetics in swine show low bioavailability and short half-life of all-rac-α-tocopheryl acetate. Journal of Animal Science, 94(10), 4188-4195.

[85]

Eggersdorfer, M., Schmidt, K., Péter, S., Richards, J., Winklhofer-Roob, B., Hahn, A., & Obermüller-Jevic, U. (2024). Vitamin E: Not only a single stereoisomer. Free Radical Biology and Medicine, 215, 106-111.

[86]

Pacana, T., & Sanyal, A. J. (2012). Vitamin E and nonalcoholic fatty liver disease. Current Opinion in Clinical Nutrition and Metabolic Care, 15(6), 641-648.

[87]

Schmölz, L., Schubert, M., Kluge, S., Birringer, M., Wallert, M., & Lorkowski, S. (2018). The hepatic fate of vitamin E. In Vitamin E in health and disease. InTech.

[88]

Mustacich, D. J., Bruno, R. S., & Traber, M. G. (2007). Vitamin E. Vitamins and Hormones, 76, 1-21.

[89]

Ulatowski, L., Ghelfi, M., West, R., Atkinson, J., Finno, C. J., & Manor, D. (2022). The tocopherol transfer protein mediates vitamin E trafficking between cerebellar astrocytes and neurons. Journal of Biological Chemistry, 298(3), 101712.

[90]

Traber, M. G. (2013). Mechanisms for the prevention of vitamin E excess. Journal of Lipid Research, 54(9), 2295-2306.

[91]

Mardones, P., & Rigotti, A. (2004). Cellular mechanisms of vitamin E uptake: Relevance in α-tocopherol metabolism and potential implications for disease. Journal of Nutrition Biochemistry, 15(5), 252-260.

[92]

Traber, M. G., & Atkinson, J. (2007). Vitamin E, antioxidant and nothing more. Free Radical Biology and Medicine, 43(1), 4-15.

[93]

Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Archives of Toxicology, 97(10), 2499-2574.

[94]

Lemaire-Ewing, S., Desrumaux, C., Neel, D., & Lagrost, L. (2010). Vitamin E transport, membrane incorporation and cell metabolism: Is alpha-tocopherol in lipid rafts an oar in the lifeboat? Molecular Nutrition & Food Research, 54(5), 631-640.

[95]

Mustacich, D. J., Leonard, S. W., Patel, N. K., & Traber, M. G. (2010). Alpha-tocopherol beta-oxidation localized to rat liver mitochondria. Free Radical Biology and Medicine, 48(1), 73-81.

[96]

Burke, M., Pal, P., Zhang, P., Zhang, X., & Zheng, G. (2021). Concise synthesis of (S)-δ-CEHC, a metabolite of vitamin E. ACS Omega, 6(6), 4355-4361.

[97]

Leonard, S. W., & Traber, M. G. (2006). Measurement of the vitamin E metabolites, carboxyethyl hydroxychromans (CEHCs), in biological samples. Current Protocols in Toxicology, 29(1), 7.8.1-7.8.12.

[98]

Baltusnikiene, A., Staneviciene, I., & Jansen, E. (2023). Beneficial and adverse effects of vitamin E on the kidney. Frontiers in Physiology, 14, 1145216.

[99]

Raila, J., & Schweigert, F. J. (2001). The role of the kidneys invitamin metabolism. Berliner und Münchener Tierärztliche Wochenschrift, 114, 257-266.

[100]

Yang, G., Ge, S., Singh, R., Basu, S., Shatzer, K., Zen, M., Liu, J., Tu, Y., Zhang, C., Wei, J., Shi, J., Zhu, L., Liu, Z., Wang, Y., Gao, S., & Hu, M. (2017). Glucuronidation: Driving factors and their impact on glucuronide disposition. Drug Metabolism Reviews, 49(2), 105-138.

[101]

Luo, J., Meulmeester, F. L., Martens, L. G., Ashrafi, N., de Mutsert, R., Mook-Kanamori, D. O., Rosendaal, F. R., Willems van Dijk, K., le Cessie, S., Mills, K., Noordam, R., & van Heemst, D. (2021). Urinary oxidized, but not enzymatic vitamin E metabolites are inversely associated with measures of glucose homeostasis in middle-aged healthy individuals. Clinical Nutrition, 40(6), 4192-4200.

[102]

Gonzalez, F. J. (2012). Nuclear receptor control of enterohepatic circulation. Comprehensive Physiology, 2(4), 2811-2828.

[103]

Valk, E. E., & Hornstra, G. (2000). Relationship between vitamin E requirement and polyunsaturated fatty acid intake in man: A review. International Journal for Vitamin and Nutrition Research, 70(2), 31-42.

[104]

Boler, D. D., Gabriel, S. R., Yang, H., Balsbaugh, R., Mahan, D. C., Brewer, M. S., McKeith, F. K., & Killefer, J. (2009). Effect of different dietary levels of natural-source vitamin E in grow-finish pigs on pork quality and shelf life. Meat Science, 83(4), 723-730.

[105]

Sharp, B. A., Young, L. G., & Van Dreumel, A. A. (1972). Dietary induction of mulberry heart disease and hepatosis dietetica in pigs. I. Nutritional aspects. Canadian Journal of Comparative Medicine, 36(4), 371-376.

[106]

Helke, K. L., Wolfe, A. M., Smith, A. C., Swagel, R., Gross, R. H., Yao, H., & McCrackin, M. A. (2020). Mulberry heart disease and hepatosis dietetica in farm pigs (Sus scrofa domesticus) in a research setting. Comparative Medicine, 70(4), 376-383.

[107]

Hove, E. L., & Seibold, H. R. (1955). Liver necrosis and altered fat composition in vitamin E-deficient swine. Journal of Nutrition, 56(2), 173-186.

[108]

Forbes, R. M., & Draper, H. H. (1958). Production and study of vitamin E deficiency in the baby pig. Journal of Nutrition, 65(4), 535-545.

[109]

Fontaine, M., Valli, V. E., Young, L. G., & Lumsden, J. H. (1977). Studies on vitamin E and selenium deficiency in young pigs. I. Hematological and biochemical changes. Canadian Journal of Comparative Medicine, 41(1), 41-51.

[110]

amazan, R. P., & Vorhies, M. W. (1976). Effect of supplemental dietary vitamin E on the serologic response of swine to an Escherichia coli bacterin. Journal of the American Veterinary Medical Association, 168(3), 231-232.

[111]

Lee, G. Y., & Han, S. N. (2018). The role of vitamin E in immunity. Nutrients, 10(11),1614.

[112]

Nielsen, H. E., Danielsen, V., Simesen, M. G., Gissel-Nielsen, G., Hjarde, W., Leth, T., & Basse, A. (1979). Selenium and vitamin E deficiency in pigs. I. Influence on growth and reproduction. Acta Veterinaria Scandinavica, 20(2), 276-288.

[113]

Lauridsen, C., Engel, H., Jensen, S. K., Craig, A. M., & Traber, M. G. (2002). Lactating sows and suckling piglets preferentially incorporate RRR-over all-rac-alpha-tocopherol into milk, plasma and tissues. Journal of Nutrition, 132(6), 1258-1264.

[114]

Dividich, J. L., Rooke, J. A., & Herpin, P. (2005). Nutritional and immunological importance of colostrum for the new-born pig. Journal of Agricultural Science, 143(06), 469-485.

[115]

Mahan, D. C., Jones, J. E., Cline, J. H., Cross, R. F., Teague, H. S., & Grifo, A. P., Jr. (1973). Efficacy of selenium and vitamin E injections in the prevention of white muscle disease in young swine. Journal of Animal Science, 36(6), 1104-1108.

[116]

Smołucha, G., Steg, A., & Oczkowicz, M. (2024). The role of vitamins in mitigating the effects of various stress factors in pigs breeding. Animals, 14(8), 1218.

[117]

Dineen, N. M., Kerry, J. P., Lynch, P. B., Buckley, D. J., Morrissey, P. A., & Arendt, E. K. (2000). Reduced nitrite levels and dietary α-tocopheryl acetate supplementation: Effects on the colour and oxidative stability of cooked hams. Meat Science, 55(4), 475-482.

[118]

NIH (National Institutes of Health). (2021). Vitamin E: Fact sheet for health professionals. Retrieved from https://ods.od.nih.gov/factsheets/VitaminE-HealthProfessional/

[119]

Booth, S. L., Golly, I., Sacheck, J. M., Roubenoff, R., Dallal, G. E., Hamada, K., & Blumberg, J. B. (2004). Effect of vitamin E supplementation on vitamin K status in adults with normal coagulation status. American Journal of Clinical Nutrition, 80(1), 143-148.

[120]

Aburto, A., & Britton, W. M. (1998). Effects and interactions of dietary levels of vitamins A and E and cholecalciferol in broiler chickens. Poultry Science, 77(5), 666-673.

[121]

Weinhold, B. (2006). Epigenetics: The science of change. Environmental Health Perspectives, 114(3), A160-A167.

[122]

Zappe, K., Pointner, A., Switzeny, O. J., Magnet, U., Tomeva, E., Heller, J., Mare, G., Wagner, K. H., Knasmueller, S., & Haslberger, A. G. (2018). Counteraction of oxidative stress by vitamin E affects epigenetic regulation by increasing global methylation and gene expression of MLH1 and DNMT1 dose dependently in Caco-2 cells. Oxidative Medicine and Cellular Longevity, 2018(1), 3734250.

[123]

Gibney, E., & Nolan, C. (2010). Epigenetics and gene expression. Heredity, 105(1), 4-13.

[124]

Huang, Y., Khor, T. O., Shu, L., Saw, C. L., Wu, T. Y., Suh, N., & Kong, A. N. (2012). A γ-tocopherol-rich mixture of tocopherols maintains Nrf2 expression in prostate tumors of TRAMP mice via epigenetic inhibition of CpG methylation. Journal of Nutrition, 142(5), 818-823.

[125]

Moore, L. D., Le, T., & Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology, 38(1), 23-38.

[126]

Busó E. J., & Iborra, M. (2016). Sequenom MassARRAY technology for the analysis of DNA methylation. In Epigenetic biomarkers and diagnostics (pp. 137-153). Elsevier Academic Press.

[127]

Tang, F., Lu, M., Zhang, S., Mei, M., Wang, T., Liu, P., & Wang, H. (2014). Vitamin E conditionally inhibits atherosclerosis in ApoE knockout mice by anti-oxidation and regulation of vasculature gene expressions. Lipids, 49(12), 1215-1223.

[128]

Dai, H., & Wang, Z. (2014). Histone modification patterns and their responses to environment. Current Environmental Health Reports, 1, 11-21.

[129]

Yuan, S., Huang, T., Bao, Z., Wang, S., Wu, X., Liu, J., Liu, H., & Chen, Z.-J. (2022). The histone modification reader ZCWPW1 promotes double-strand break repair by regulating cross-talk of histone modifications and chromatin accessibility at meiotic hotspots. Genome Biology, 23(1), 187.

[130]

Liu, R., Wu, J., Guo, H., Yao, W., Li, S., Lu, Y., Jia, Y., Liang, X., Tang, J., & Zhang, H. (2023). Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm, 4(3), e292.

[131]

Remely, M., Ferk, F., Sterneder, S., Setayesh, T., Kepcija, T., Roth, S., Noorizadeh, R., Greunz, M., Rebhan, I., Wagner, K. H., Knasmüller, S., & Haslberger, A. (2017). Vitamin E modifies high-fat diet-induced increase of DNA strand breaks, and changes in expression and DNA methylation of Dnmt1 and MLH1 in C57BL/6J male mice. Nutrients, 9(6), 607.

[132]

Luna, R. C. P., Dos Santos Nunes, M. K., Monteiro, M. G. C. A., da Silva, C. S. O., do Nascimento, R. A. F., Lima, R. P. A., Pimenta, F. C. F., de Oliveira, N. F. P., Persuhn, D. C., de Almeida, A. T. C., da Silva Diniz, A., Pissetti, C. W., Vianna, R. P. T., de Lima Ferreira, F. E. L., Rodrigues Gonçalves, M. D. C., & de Carvalho Costa, M. J. (2018). α-Tocopherol influences glycaemic control and miR-9-3 DNA methylation in overweight and obese women under an energy-restricted diet: A randomized, double-blind, exploratory, controlled clinical trial. Nutrition & Metabolism, 15(1), 49.

[133]

Athanasopoulos, D., Karagiannis, G., & Tsolaki, M. (2016). Recent findings in Alzheimer disease and nutrition focusing on epigenetics. Advances in Nutrition, 7(5), 917-927.

[134]

Khajebishak, Y., Alivand, M., Faghfouri, A. H., Moludi, J., & Payahoo, L. (2023). The effects of vitamins and dietary pattern on epigenetic modification of non-communicable diseases. International Journal for Vitamin and Nutrition Research, 93(4), 362-377.

[135]

Nukala, S. B., Jousma, J., Cho, Y., Lee, W. H., & Ong, S.-G. (2022). Long non-coding RNAs and microRNAs as crucial regulators in cardio-oncology. Cell & Bioscience, 12(1), 24.

[136]

Ratti, M., Lampis, A., Ghidini, M., Salati, M., Mirchev, M. B., Valeri, N., & Hahne, J. C. (2020). MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: First steps from bench to bedside. Targeted Oncology, 15(3), 261-278.

[137]

Ferrero, G., Carpi, S., Polini, B., Pardini, B., Nieri, P., Impeduglia, A., Grioni, S., Tarallo, S., & Naccarati, A. (2021). Intake of natural compounds and circulating microRNA expression levels: Their relationship investigated in healthy subjects with different dietary habits. Frontiers in Pharmacology, 11, 619200.

[138]

Siengdee, P., Trakooljul, N., Murani, E., Brand, B., Schwerin, M., Wimmers, K., & Ponsuksili, S. (2015). Pre- and post-natal muscle microRNA expression profiles of two pig breeds differing in muscularity. Gene, 561(2), 190-198.

[139]

Song, Z., Cooper, D. K. C., Cai, Z., & Mou, L. (2018). Expression and regulation profile of mature MicroRNA in the pig: Relevance to xenotransplantation. BioMed Research International, 2018, 2983908-2983909.

[140]

Rodriguez, J. A., Nespereira, B., Perez-Ilzarbe, M., Eguinoa, E., & Paramo, J. A. (2005). Vitamins C and E prevent endothelial VEGF and VEGFR-2 overexpression induced by porcine hypercholesterolemic LDL. Cardiovascular Research, 65(3), 665-673.

[141]

Li, Y. J., Li, L. Y., Li, J. L., Zhang, L., Gao, F., & Zhou, G. H. (2015). Effects of dietary supplementation with ferulic Acid or vitamin e individually or in combination on meat quality and antioxidant capacity of finishing pigs. Asian- Asian-Australasian Journal of Animal Sciences, 28(3), 374-381.

[142]

Huang, C., Chiba, L. I., Magee, W. M., Wang, Y., Roding, S. P., Bratcher, C. L., Bergen, W. G., & Spangler, E. (2020). Effect offlaxseed oil, poultry fat, and vitamin E supplementation on physical and organoleptic characteristics and fatty acidprofile of pork, and expression of genes associated with lipid metabolism. Livestock Science, 231, 1-9.

[143]

Bhatti, F. U. R., Kim, S. J., Yi, A. K., Hasty, K. A., & Cho, H. (2018). Cytoprotective role of vitamin E in porcine adipose-tissue-derived mesenchymal stem cells against hydrogen-peroxide-induced oxidative stress. Cell and Tissue Research, 374(1), 111-120.

[144]

Webel, D. M., Mahan, D. C., Johnson, R. W., & Baker, D. H. (1998). Pretreatment of young pigs with vitamin E attenuates the elevation in plasma interleukin-6 and cortisol caused by a challenge dose of lipopolysaccharide. Journal of Nutrition, 128(10), 1657-1660.

[145]

Liu, F., Cottrell, J. J., Furness, J. B., Rivera, L. R., Kelly, F. W., Wijesiriwardana, U., Pustovit, R. V., Fothergill, L. J., Bravo, D. M., Celi, P., Leury, B. J., Gabler, N. K., & Dunshea, F. R. (2016). Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed pigs. Experimental Physiology, 101(7), 801-810.

[146]

Elgendey, F., Al Wakeel, R. A., Hemeda, S. A., Elshwash, A. M., Fadl, S. E., Abdelazim, A. M., Alhujaily, M., & Khalifa, O. A. (2022). Selenium and/or vitamin E upregulate the antioxidant gene expression and parameters in broilers. BMC Veterinary Research, 18(1), 310.

[147]

Belisle, S. E., Leka, L. S., Dallal, G. E., Jacques, P. F., Delgado-Lista, J., Ordovas, J. M., & Meydani, S. N. (2008). Cytokine response to vitamin E supplementation is dependent on pre-supplementation cytokine levels. BioFactors, 33(3), 191-200.

[148]

Amevor, F. K., Cui, Z., Ning, Z., Shu, G., Du, X., Jin, N., Deng, X., Xu, D., Tian, Y., Zhang, Y., Li, D., Wang, Y., Du, X., & Zhao, X. (2022). Dietary quercetin and vitamin E supplementation modulates the reproductive performance and antioxidant capacity of aged male breeder chickens. Poultry Science, 101(6), 101851.

[149]

Khalifa, O. A., Al Wakeel, R. A., Hemeda, S. A., Abdel-Daim, M. M., Albadrani, G. M., El Askary, A., Fadl, S. E., & Elgendey, F. (2021). The impact of vitamin E and/or selenium dietary supplementation on growth parameters and expression levels of the growth-related genes in broilers. BMC Veterinary Research, 17(1), 251.

[150]

Rao, Z. X., Tokach, M. D., Woodworth, J. C., DeRouchey, J. M., Goodband, R. D., Shah, A. S., Foley, B. H., Kjeldsen, K. C., Brunsgaard, G., & Gebhardt, J. T. (2023). Polyphenols as a partial replacement for vitamin E in nursery pig diets. Translational Animal Science, 7(1), txad116.

[151]

Lacal, I., & Ventura, R. (2018). Epigenetic inheritance: Concepts, mechanisms and perspectives. Frontiers in Molecular Neuroscience, 11, 292.

[152]

Lambrot, R., Xu, C., Saint-Phar, S., Chountalos, G., Cohen, T., Paquet, M., Suderman, M., Hallett, M., & Kimmins, S. (2013). Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes. Nature Communications, 4(1), 2889.

[153]

Kanherkar, R. R., Bhatia-Dey, N., & Csoka, A. B. (2014). Epigenetics across the human lifespan. Frontiers in Cell and Developmental Biology, 2, 49.

[154]

Hariharan, S., & Dharmaraj, S. (2020). Selenium and selenoproteins: it’s role in regulation of inflammation. Inflammopharmacology, 28(3), 667-695.

[155]

Hakkarainen, J., Lindberg, P., Bengtsson, G., & Jönsson, L. (1978). Combined therapeutic effect of dietary selenium and vitamin E on manifested VESD syndrome in weaned pigs. Acta Veterinaria Scandinavica, 19(2), 285-297.

[156]

Teige, J., Tollersrud, S., Lund, A., & Larsen, H. J. (1982). Swine dysentery: The influence of dietary vitamin E and selenium on the clinical and pathological effects of Treponema hyodysenteriae infection in pigs. Research in Veterinary Science, 32(1), 95-100.

[157]

Zhu, C., Yang, J., Nie, X., Wu, Q., Wang, L., & Jiang, Z. (2022). Influences of dietary vitamin E, selenium-enriched yeast, and soy isoflavone supplementation on growth performance, antioxidant capacity, carcass traits, meat quality and gut microbiota in finishing pigs. Antioxidants, 11(8), 1510.

[158]

Traber, M. G., & Stevens, J. F. (2011). Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radical Biology and Medicine, 51(5), 1000-1013.

[159]

Stahly, T. S., Cook, D. R., & Ewan, R. C. (1998). Dietary vitamin A, E, and C needs of pigs experiencing a low or high level of antigen exposure. Iowa State University. ASL-1480. Retrieved from https://www.extension.iastate.edu/Pages/ansci/swinereports/asl-1480.pdf

[160]

Sosnowska, A., Kawęcka, M., Jacyno, E., Kołodziej-Skalska, A., Kamyczek, M., & Matysiak, B. (2011). Effect of dietary vitamins E and C supplementation on performanceof sows and piglets. Acta Agriculturae Scandinavica, Section A-Animal Science, 61(4), 196-203.

[161]

Packer, L., & Obermüller-Jevic, U. C. (2002). Vitamin E: An introduction. In The antioxidant vitamins C and E (pp. 133-151). AOCS Press.

[162]

Tesoriere, L., Bongiorno, A., Pintaudi, A. M., D’Anna, R., D’Arpa, D., & Livrea, M. A. (1996). Synergistic interactions between vitamin A and vitamin E against lipid peroxidation in phosphatidylcholine liposomes. Archives of Biochemistry and Biophysics, 326(1), 57-63.

[163]

Tesoriere, L., Ciaccio, M., Bongiorno, A., Riccio, A., Pintaudi, A. M., & Livrea, M. A. (1993). Antioxidant activity of all-trans-retinol in homogeneous solution and in phosphatidylcholine liposomes. Archives of Biochemistry and Biophysics, 307(1), 217-223.

[164]

Guilland, J.-C. (2011). Les interactions entre les vitamines A, D, E et K: synergie et/ou competition. Oilseeds and fats, Crops and Lipids, 18(2), 59-67.

[165]

Goncalves, A., Roi, S., Nowicki, M., Dhaussy, A., Huertas, A., Amiot, M. J., & Reboul, E. (2015). Fat-soluble vitamin intestinal absorption: Absorption sites in the intestine and interactions for absorption. Food Chemistry, 172, 155-160.

[166]

Moore, T. (1940). The effect of vitamin E deficiency on vitamin A reserves of the rat. Biochemical Journal, 34(8-9), 1321-1328.

[167]

Awada, M., Soulage, C. O., Meynier, A., Debard, C., Plaisancié P., Benoit, B., Picard, G., Loizon, E., Chauvin, M. A., Estienne, M., Peretti, N., Guichardant, M., Lagarde, M., Genot, C., & Michalski, M. C. (2012). Dietary oxidized n-3 PUFA induce oxidative stress and inflammation: Role of intestinal absorption of 4-HHE and reactivity in intestinal cells. Journal of Lipid Research, 53(10), 2069-2080.

[168]

Jensen, M., Hakkarainen, J., Lindholm, A., & Jönsson, L. (1988). Vitamin E requirement of growing swine. Journal of Animal Science, 66(12), 3101-3111.

[169]

Putnam, M., & Comben, N. (1995). Vitamin E. The Veterinary Record, 121, 541-546.

[170]

Isabel, B., Rey, A. I., Lopez-Bote, C. J., Menoyo, D., & Daza, A. (2004). Performance, fatty acids digestibility, carcass and muscle composition of pigs fed diets enriched with vitamin E and differing in their MUFA/PUFA ratio. Journal of Animal and Feed Sciences, 13(3), 429-443.

[171]

Dove, C. R., & Ewan, R. C. (1990). Effect of excess dietary copper, iron or zinc on the tocopherol and selenium status of growing pigs. Journal of Animal Science, 68(8), 2407-2413.

[172]

Kozlowski, H., Janicka-Klos, A., Brasun, J., Gaggelli, E., Valensin, D., & Valensin, G. (2009). Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coordination Chemistry Reviews, 253(1-2), 2665-2685.

[173]

Li, Y., Du, Y., Zhou, Y., Chen, Q., Luo, Z., Ren, Y., Chen, X., & Chen, G. (2023). Iron and copper: Critical executioners of ferroptosis, cuproptosis and other forms of cell death. Cell Communication and Signaling, 21(1), 327.

[174]

Wheldon, G. H., Bhatt, A., Keller, P., & Hummler, H. (1983). d,1-Alpha-tocopheryl acetate (vitamin E): a long term toxicity and carcinogenicity study in rats. International Journal for Vitamin and Nutrition Research, 53, 287-296.

[175]

Cort, W. Ms., Vicente, T. S., Waysek, E. H., & Williams, B. D. (1983). Vitamin E content of feedstuffs determined by high-performance liquid chromatographic fluorescence. Journal of Agricultural and Food Chemistry, 31(6), 1330-1333.

[176]

Chen, Y., Huang, C., Liu, L., Lai, C., & Wang, F. (2019). Concentration of Vitamins in the 13 feed ingredients commonly used in pig diets. Animal Feed Science and Technology, 247, 1-8.

[177]

INRAE. (2024). INRA-CIRAD-AFZ feed tables: Composition and nutritive values of feeds for cattle, sheep, goats, pigs, poultry, rabbits, horses, and salmonids. Retrieved from https://www.feedtables.com/content/vitamin-e

[178]

Mordenti, A. L., Giaretta, E., Campidonico, L., Parazza, P., & Formigoni, A. (2021). A review regarding the use of molasses in animal nutrition. Animals, 11(1), 115.

[179]

Lauridsen, C., & Jensen, S. K. (2005). Influence of supplementation of all-rac-alpha-tocopheryl acetate preweaning and vitamin C postweaning on alpha-tocopherol and immune responses of piglets. Journal of Animal Science, 83(6), 1274-1286.

[180]

Amazan, D., Rey, A. I., Fernandez, E., & Lopez-Bote, C. J. (2012). Natural vitamin E (D-alpha-tocopherol) supplementation in drinking water prevents oxidative stress in weaned piglets. Livestock Science, 145(1-3), 55-62.

[181]

SEGES (The Knowledge and Innovation Centre of Danish Agriculture). (2024). Danish nutrient standards. Per Tybirk, Niels Morten Sloth, Thomas Sønderby Bruun and Janni Hales (35th ed.). Retrieved from https://pigresearchcentre.dk/-/media/PDF/English-site/Research_PDF/Nutrition-standards/Foder_Naeringsstoffer_Normer_for_naeringsstoffer2_uk.pdf

[182]

Threadgold, T., Greenwood, E. C., & Van Wettere, W. (2021). Identifying suitable supplements to improve piglet survival during farrowing and lactation. Animals, 11(10), 2912.

[183]

Gómez, G., Laviano, H. D., García-Casco, J. M., Escudero, R., Muñoz, M., Heras-Molina, A., González-Bulnes, A., Óvilo, C., López-Bote, C., & Rey, A. I. (2023). Different effect of vitamin E or hydroxytyrosol supplementation to sow’s diet on oxidative status and performances of weaned piglets. Antioxidants, 12(8), 1504.

[184]

Kjeldsen, N. (2023). From feed to pig-Supply and utilisation of nutrients. Chapter 2 in Textbook of Physiology. https://svineproduktion.dk/-/media/PDF/Services/Undervisningsmateriale/Laerebog_fysiologi/Chapter-2.ashx?la=da&hash=68D76B6BF84018B03A6F8886DDD2D91CA91B173F

[185]

Faccin, J. E. G., Tokach, M. D., Goodband, R. D., DeRouchey, J. M., Woodworth, J. C., & Gebhardt, J. T. (2023). Industry survey of added vitamins and trace minerals in U.S. swine diets. Translational Animal Science, 7(1). txad035.

[186]

Lipinski, K., Antoszkiewicz, Z., Mazur-Kusnirek, M., Korniewicz, D., & Kotlarczyk, S. (2019). The effect of polyphenols on the performance and antioxidant status of sows and piglets. Italian Journal of Animal Science, 18(1), 174-181.

[187]

Liu, Q., Zhou, Y. F., Duan, R. J., Wei, H. K., Peng, J., & Jiang, S. W. (2017). Dietary n-6:n-3 ratio and Vitamin E improve motility characteristics in association with membrane properties of boar spermatozoa. Asian Journal of Andrology, 19(2), 223-229.

[188]

Mavromatis, J., Koptopoulos, G., Kyriakis, S. C., Papasteriadis, A., & Saoulidis, K. (1999). Effects of alpha-tocopherol and selenium on pregnant sows and their piglets’ immunity and performance. Zentralblatt für Veterinärmedizin Reihe A, 46(9), 545-553.

[189]

Liu, Q., Zhou, Y. F., Duan, R. J., Wei, H. K., Jiang, S. W., & Peng, J. (2015). Effects of dietary n-6:n-3 fatty acid ratio and vitamin E on semen quality, fatty acid composition and antioxidant status in boars. Animal Reproduction Science, 162, 11-19.

[190]

Chen, J., Han, J. H., Guan, W. T., Chen, F., Wang, C. X., Zhang, Y. Z., Lv, Y. T., & Lin, G. (2016). Selenium and vitamin E in sow diets: I. Effect on antioxidant status and reproductive performance in multiparous sows. Animal Feed Science and Technology, 221, 111-123.

[191]

Liu, Q., Zhou, Y., Duan, R., Wei, H., Jiang, S., & Peng, J. (2016). Lower dietary n-6: n-3 ratio and high-dose vitamin E supplementation improve sperm morphology and oxidative stress in boars. Reproduction, Fertility and Development, 29(5), 940-949.

[192]

Shelton, N. W., Dritz, S. S., Nelssen, J. L., Tokach, M. D., Goodband, R. D., DeRouchey, J. M., Yang, H., Hill, D. A., Holzgraefe, D., Hall, D. H., & Mahan, D. C. (2014). Effects of dietary vitamin E concentration and source on sow, milk, and pig concentrations of alpha-tocopherol. Journal of Animal Science, 92(10), 4547-4556.

[193]

Pinelli-Saavedra, A., & Scaife, J. R. (2005). Pre- and postnatal transfer of vitamins E and C to piglets in sows supplemented with vitamin E and vitamin C. Livestock Production Science, 97(2-3), 231-240.

[194]

Malm, A., Pond, W. G., Walker, E. F., Jr., Homan, M., Aydin, A., & Kirtland, D. (1976). Effect of polyunsaturated fatty acids and vitamin E level of the sow gestation diet on reproductive performance and on level of alpha tocopherol in colostrum, milk and dam progeny blood serum. Journal of Animal Science, 42(2), 393-399.

[195]

Migdal, W., & Kaczmarczyk, J. (1993). Effect to injection of selenium and vitamin E on reproductive performance of sows and Se concentration in sow milk. World Review of Animal Production, 28, 68-71.

[196]

DLG (Deutsche Landwirtschafts-Gesellschaft). (2010). Erfolgreiche Mastschweinefütterung. DLG-Verlags-GmbH.

[197]

NASEM (National Academies of Sciences, Engineering, and Medicine). (1988). Nutrient requirements of swine (9th rev). National Academy Press.

[198]

NASEM (National Academies of Sciences, Engineering, and Medicine). (1998). Nutrient requirements of swine (10th rev). National Academy Press.

[199]

Kim, B. G., & Lindemann, M. D. (2007). An overview of mineral and vitamin requirements of swine in the National Research Council (1944 to 1998) publications. Professional Animal Scientist, 23(6), 584-596.

[200]

PIC. (2016). PIC nutrient specification manual. PIC.

[201]

Genesus. (2017). Genesus nutrient specifications.

[202]

Topigs Norsvin. (2016). Rearing gilts and sows. Manual Topigs, 20.

[203]

Hypor (A Hendrix Genetics Company). (2017). Wean to finish feeding guide Hypor Maxter.

[204]

Hypor (A Hendrix Genetics Company). (2017). Sow and gilt feeding guide Hypor Libra.

[205]

BHZP. (2016). Bundes hybrid Zucht Programm. Dahlenburg-Ellringen.

[206]

DanBred. (2024). Nutrient specifications.

[207]

Cho, J. H., Lu, N., & Lindemann, M. D. (2017). Effects of vitamin supplementation on growth performance and carcass characteristics in pigs. Livestock Science, 204, 25-32.

[208]

Yang, P., Zhao, J., Wang, H., Li, L., & Ma, Y. (2020). Effects of vitamin forms and levels on vitamin bioavailability and growth performance in piglets. Applied Sciences, 10(14), 4903.

[209]

Hinson, R. B., McCormick, K. A., Moser, R. L., Ackerman, M. A., Main, R. G., & Mahoney, J. A. (2022). Reduced vitamin supplementation with fat-soluble vitamins A, D, and E added at National Research Council requirements may not be adequate for optimal sow and progeny performance. Journal of Swine Health and Production, 30(2), 79-94.

[210]

Dalto, D. B., & da Silva, C. A. (2020). A survey of current levels of trace minerals and vitamins used in commercial diets by the Brazilian pork industry-A comparative study. Translational Animal Science, 4. txaa195.

[211]

Yang, P., Wang, H. K., Li, L. X., & Ma, Y. X. (2021). The strategies for the supplementation of vitamins and trace minerals in pig production: Surveying major producers in China. Animal Biosciences, 34(8), 1350-1364.

[212]

Blaner, W. S., Shmarakov, I. O., & Traber, M. G. (2021). Vitamin A and vitamin E: Will the real antioxidant please stand up? Annual Review of Nutrition, 11(41), 105-131.

[213]

Orengo, J., Hernández, F., Martínez-Miró S., Sánchez, C. J., Peres Rubio, C., & Madrid, J. (2021). Effects of commercial antioxidants in feed on growth performance and oxidative stress status of weaned piglets. Animals, 11(2), 266.

[214]

Wang, D., Dal Jang, Y., Rentfrow, G. K., Azain, M. J., & Lindemann, M. D. (2022). Effects of dietary vitamin E and fat supplementation in growing-finishing swine fed to a heavy slaughter weight of 150 kg: I. Growth performance, lean growth, organ size, carcass characteristics, primal cuts, and pork quality. Journal of Animal Science, 100(4), skac081.

[215]

Goh, T. W., Kim, H. J., Moon, K., & Kim, Y. Y. (2023). Effects of β-glucan with vitamin E supplementation on the growth performance, blood profiles, immune response, pork quality, pork flavor, and economic benefit in growing and finishing pigs. Animal Biosciences, 36(6), 929-942.

[216]

Wang, H., Wang, L., Shi, B., & Shan, A. (2012). Effects of dietary corn dried distillers grains with solubles and vitamin E on growth performance, meat quality, fatty acid profiles and pork shelf life of finishing pigs. Livestock Science, 149(1-2), 156-166.

[217]

Wilburn, E. E., Mahan, D. C., Hill, D. A., Shipp, T. E., & Yang, H. (2008). An evaluation of natural (RRR-alpha-tocopheryl acetate) and synthetic (all-rac-alpha-tocopheryl acetate) vitamin E fortification in the diet or drinking water of weanling pigs. Journal of Animal Science, 86(3), 584-591.

[218]

Bovula, N., Ncobela, C. N., Pilane, C. M., Nedambale, T. L., & Chimonyo, M. (2021). Growth performance and fertility of Windsnyer boars supplemented with α-tocopherol. Tropical Animal Health and Production, 53(1), 161.

[219]

Niculita, P., Popa, M. E., Ghidurus, M., & Turtoi, M. (2007). Effect of vitamin E in swine diet on animal growth performance and meat quality parameters. Polish Journal of Food and Nutrition Sciences, 57(1), 125-130.

[220]

Waylan, A. T., O’Quinn, P. R., Unruh, J. A., Nelssen, J. L., Goodband, R. D., Woodworth, J. C., Tokach, M. D., & Koo, S. I. (2002). Effects of modified tall oil and vitamin E on growth performance, carcass characteristics, and meat quality of growing-finishing pigs. Journal of Animal Science, 80(6), 1575-1585.

[221]

Wu, Q., Luo, Y., Lu, H., Xie, T., Hu, Z., Chu, Z., & Luo, F. (2024). The potential role of vitamin E and the mechanism in the prevention and treatment of inflammatory bowel disease. Foods, 13(6), 898.

[222]

Wu, D., & Meydani, S. N. (2008). Age-associated changes in immune and inflammatory responses: Impact of vitamin E intervention. Journal of Leukocyte Biology, 84(4), 900-914.

[223]

Blodgett, D. J., Kornegay, E. T., Schurig, G. G., Meldrum, J. B., & Bonnette, E. D. (1988). Vitamin E - selenium and inmaune response to selected antigens in swine. Nutrition Reports International, 38, 37-43.

[224]

Rafai, P., Molnar, L., Glavits, R., Tuboly, S., Biro, H., Jakab, L., & Papp, Z. (1989). Influence of the supplementation of the feed of young pigs with selenium and vitamins E and B2 on the immunoreactivity and experimentally induced Treponema hyodysenteriae infection. III. Effect of feed supplementation on the success of experimental Treponema hyodysenteriae infection. Hungarian Veterinary Journal, 44, 37-41.

[225]

Wuryastuti, H., Stowe, H. D., Bull, R. W., & Miller, E. R. (1993). Effects of vitamin E and selenium on immune response of peripheral blood, colostmm, and milk leukocytes of sows. Journal of Animal Science, 71(9), 2464-2472.

[226]

Bonnette, E. D., Kornegay, E. T., Lindemann, M. D., & Hammerberg, C. (1990). Humoral and cell-mediated immune response and performance of weaned pigs fed four supplemental vitamin E levels and housed at two nursery temperatures. Journal of Animal Science, 68(5), 1337-1345.

[227]

Teige, J., Tollersrud, S., Lund, A., & Larsen, H. J. (1982). Swine dysentery: The influence of dietary vitamin E and selenium on the clinical and pathological effects of Treponema hyodysenteriae infection in pigs. Research in Veterinary Science, 32(1), 95-100.

[228]

Nemec, M., Butler, G., Hidiroglou, M., Farnworth, E. R., & Nielsen, K. (1994). Effect of supplementing gilts’ diets with different levels of vitamin E and different fats on the humoral and cellular immunity of gilts and their progeny. Journal of Animal Science, 72(3), 665-676.

[229]

Madsen, P. A., Jensen, S. K., & Lauridsen, C. (2024). Redox balance and immunity of piglets pre- and post-E. coli challenge after treatment with hemp or fish oil, and vitamin E. Science Reports, 14(1), 11053.

[230]

Lanari, M. C., Schaefer, D. M., & Scheller, K. K. (1995). Dietary vitamin E supplementation and discoloration of pork bone and muscle following modified atmosphere packaging. Meat Science, 41(3), 237-250.

[231]

Sales, J., & Koukolová V. (2011). Dietary vitamin E and lipid and color stability of beef and pork: Modeling of relationships. Journal of Animal Science, 89(9), 2836-2848.

[232]

Hoa, V. B., Cho, S. H., Seong, P. N., Kang, S. M., Kim, Y. S., Moon, S. S., Choi, Y. M., Kim, J. H., & Seol, K. H. (2021). The significant influences of pH, temperature and fatty acids on meat myoglobin oxidation: A model study. Journal of Food Science and Technology, 58(10), 3972-3980.

[233]

Houben, J. H., Eikelenboom, G., & Hoving-Bolink, A. H. (1998). Effect of the dietary supplementation with vitamin E on colour stability and lipid oxidation in packaged, minced pork. Meat Science, 48(3-4), 265-273.

[234]

Zanardi, E., Novelli, E., Ghiretti, G. P., Dorigoni, V., & Chizzolini, R. (1999). Colour stability and vitamin E content of fresh and processed pork. Food Chemistry, 67(2), 163-171.

[235]

Domínguez, R., Pateiro, M., Gagaoua, M., Barba, F. J., Zhang, W., & Lorenzo, J. M. (2019). A comprehensive review on lipid oxidation in meat and meat products. Antioxidants, 8(10), 429.

[236]

Lahučký R., Bahelka, I., Novotná K., & Vašíčková K. (2005). Effects of dietary vitamin E and vitamin C supplementation on the level of α-tocopherol and L-ascorbic acid in muscle and on the antioxidative status and meat quality of pigs. Czech Journal of Animal Science, 50(4), 175-184.

[237]

Guo, Q., Richert, B. T., Burgess, J. R., Webel, D. M., Orr, D. E., Blair, M., Grant, A. L., & Gerrard, D. E. (2006). Effect of dietary vitamin E supplementation and feeding period on pork quality. Journal of Animal Science, 84(11), 3071-3078.

[238]

Jose, C. G., Trezona, M., Smith, G., Suckling, A., Mullan, B., & Kim, J. (2015). The influence of rate of dietary vitamin E supplementation on the shelf life and retail display quality of Australian Pork 3A-110. Report prepared for the Co-operative Research Centre for High Integrity Australian Pork. https://porkcrc.com.au/wp-content/uploads/2015/07/3A-110-Final-Report.pdf

[239]

Dirinck, P., DeWinne, A., Casteels, M., & Frigg, M. (1996). Studies on vitamin E and meat quality .1. Effect of feeding high vitamin E levels on time-related pork quality. Journal of Agricultural and Food Chemistry, 44(1), 65-68.

[240]

Kelley, M. (2020). Effect of different fat sources and vitamin E isoforms/ levels on carcass characteristics, meat quality, and belly/bacon characteristics of pigs grown to heavy slaughter weights (>150kg). Theses and Dissertations-Animal and Food Sciences. https://uknowledge.uky.edu/animalsci_etds/118

[241]

Corino, C., Oriani, G., Pantaleo, L., Pastorelli, G., & Salvatori, G. (1999). Influence of dietary vitamin E supplementation on “heavy” pig carcass characteristics, meat quality, and vitamin E status. Journal of Animal Science, 77(7), 1755-1761.

[242]

Sárraga, C., Guàrdia, M. D., Díaz, I., Guerrero, L., García Regueiro, J. A., & Arnau, J. (2007). Nutritional and sensory quality of porcine raw meat, cooked ham and dry-cured shoulder as affected by dietary enrichment with docosahexaenoic acid (DHA) and α-tocopheryl acetate. Meat Science, 76(2), 377-384.

[243]

Lauridsen, C., Krogh, J., Skibsted, L. H., & Bertelsen, G. (2000). Influence of supranutritional vitamin E and copper on α-tocopherol deposition and susceptibility to lipid oxidation of porcine membranal fractions of M. Psoas major and M. Longissimus dorsi. Meat Science, 54(4), 377-384.

[244]

Rajauria, G., Draper, J., McDonnell, M., & O’Doherty, J. V. (2016). Effect of dietary seaweed extracts, galactooligosaccharide and vitamin E supplementation on meat quality parameters in finisher pigs. Innovative Food Science & Emerging Technologies, 37(Part B), 269-275.

[245]

Meineri, G., Medana, C., Giancotti, V., Visentin, S., & Peiretti, P. G. (2013). Effect of dietary supplementation of vitamin E in pigs to prevent the formation of carcinogenic substances in meat products. Journal of Food Composition and Analysis, 30(2), 67-72.

[246]

Lahucky, R., Bahelka, I., Kuechenmeister, U., Vasickova, K., Nuernberg, K., Ender, K., & Nuernberg, G. (2007). Effects of dietary supplementation of vitamins D3 and E on quality characteristics of pigs and longissimus muscle antioxidative capacity. Meat Science, 77(2), 264-268.

[247]

Huang, C., Chiba, L. I., Magee, W. E., Wang, Y., Griffing, D. A., Torres, I. M., Rodning, S. P., Bratcher, C. L., Bergen, W. G., & Spangler, E. A. (2019). Effect of flaxseed oil, animal fat, and vitamin E supplementation on growth performance, serum metabolites, and carcass characteristics of finisher pigs, and physical characteristics of pork. Livestock Science, 220, 143-151.

[248]

Bosi, P., Cacciavillani, J. A., Casini, L., Lo Fiego, D. P., Marchetti, M., & Mattuzzi, S. (2000). Effects of dietary high-oleic acid sunflower oil, copper and vitamin E levels on the fatty acid composition and the quality of dry cured Parma ham. Meat Science, 54(2), 119-126.

[249]

Cava, R., Ventanas, J., Florencio Tejeda, J., Ruiz, J., & Antequera, T. (2000). Effect of free-range rearing and a-tocopherol and copper supplementation on fatty acid profiles and susceptibility to lipid oxidation of fresh meat from Iberian pigs. Food Chemistry, 68(1), 51-59.

[250]

Lahucky, R., Kuechenmeister, U., Bahelka, I., Novotna, K., Vasickova, K., & Ender, E. (2005). Effects of vitamin E by dietary supplementation and of calcium ascorbate by post mortem injection in muscle on the antioxidative status and on meat quality of pigs. Archiv für Tierzucht, 48(6), 592-600.

[251]

Phillips, A. L., Faustman, C., Lynch, M. P., Govoni, K. E., Hoagland, T. A., & Zinn, S. A. (2001). Effect of dietary α-tocopherol supplementation on color and lipid stability in pork. Meat Science, 58(4), 389-393.

[252]

Szewczyk, K., Chojnacka, A., & Górnicka, M. (2021). Tocopherols and tocotrienols-bioactive dietary compounds; what is certain, what is doubt? International Journal of Molecular Sciences, 22(12), 6222.

[253]

Liu, F., Celi, P., Chauhan, S. S., Cottrell, J. J., Leury, B. J., & Dunshea, F. R. (2018). A short-term supranutritional vitamin E supplementation alleviated respiratory alkalosis but did not reduce oxidative stress in heat stressed pigs. Asian-Australasian Journal of Animal Sciences, 31(2), 263-269.

[254]

Mayorga, E. J., Renaudeau, D., Ramirez, B. C., Ross, J. W., & Baumgard, L. H. (2018). Heat stress adaptations in pigs. Animal Frontiers, 9(1), 54-61.

[255]

Guevara, R. D., Pastor, J. J., Manteca, X., Tedo, G., & Llonch, P. (2022). Systematic review of animal-based indicators to measure thermal, social, and immune-related stress in pigs. PLoS One, 17(5), e0266524.

[256]

Lodge, J. K. (2008). Mass spectrometry approaches for vitamin E research. Biochemical Society Transactions, 36(Pt 5), 1066-1070.

[257]

Moco, S. (2022). Studying metabolism by NMR-based metabolomics. Frontiers in Molecular Biosciences, 9, 882487.

[258]

Bartolini, D., Marinelli, R., Giusepponi, D., Galarini, R., Barola, C., Stabile, A. M., Sebastiani, B., Paoletti, F., Betti, M., Rende, M., & Galli, F. (2021). Alpha-Tocopherol metabolites (the vitamin E metabolome) and their interindividual variability during supplementation. Antioxidants, 10(2), 173.

[259]

Cirlini, M., Righetti, L., Del Vecchio, L., Tonni, E., Lucini, L., Dall’Asta, C., & Galaverna, G. (2023). Untargeted metabolomics of meat digests: Its potential to differentiate pork depending on the feeding regimen. Molecules, 28(21), 7306.

[260]

Spivey, A. (2004). Systems biology: The big picture. Environmental Health Perspectives, 112(16), A938-A943.

[261]

Pinu, F. R., Beale, D. J., Paten, A. M., Kouremenos, K., Swarup, S., Schirra, H. J., & Wishart, D. (2019). Systems biology and multi-omics integration: Viewpoints from the metabolomics research community. Metabolites, 9(4), 76.

[262]

Vranken, E., & Berckmans, D. (2017). Precision livestock farming for pigs. Animal Frontiers, 7(1), 32-37.

[263]

Benjamin, M., & Yik, S. (2019). Precision livestock farming in swine welfare: A review for swine practitioners. Animals, 9(4), 133.

[264]

Morrone, S., Dimauro, C., Gambella, F., & Cappai, M. G. (2022). Industry 4.0 and precision livestock farming (PLF): An up to date overview across animal productions. Sensors, 22(12), 4319.

[265]

Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., Aldairem, A., Alrashed, M., Bin Saleh, K., Badreldin, H. A., Al Yami, M. S., Al Harbi, S., & Albekairy, A. M. (2023). Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Medical Education, 23(1), 689.

[266]

Arshad, R., Gulshad, L., Haq, I. U., Farooq, M. A., Al-Farga, A., Siddique, R., Manzoor, M. F., & Karrar, E. (2021). Nanotechnology: A novel tool to enhance the bioavailability of micronutrients. Food Science and Nutrition, 9(6), 3354-3361.

[267]

Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. D. P., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S., & Shin, H. S. (2018). Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 71.

RIGHTS & PERMISSIONS

2024 The Author(s). Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

292

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/