Advancements in synergistic fermentation of probiotics and enzymes for non-grain feed raw materials

Xiangrong Deng , Kai Chen , Dahai Jiang , Liming Lu

Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (1) : 31 -42.

PDF
Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (1) : 31 -42. DOI: 10.1002/aro2.90
REVIEW

Advancements in synergistic fermentation of probiotics and enzymes for non-grain feed raw materials

Author information +
History +
PDF

Abstract

To address the escalating challenge of food scarcity and the associated conflicts between human and animal consumption, it is imperative to seek alternative resources that can substitute for traditional feed. Non-grain feed (NGF) raw materials represent a category of biomass resources that are distinct from grains in their composition. These materials are characterized by their high nutritional content, cost-effectiveness, ample availability, and consistent supply, which contribute to their significant economic potential. Nonetheless, the extensive application of NGF is currently hindered by several limitations, including a high concentration of antinutritional factors, suboptimal palatability, and an offensive odor, among other shortcomings. The synergistic fermentation of probiotics and enzymes (SFPE) is an innovative approach that integrates the use of a diverse array of enzymes during the feed fermentation process, as well as various strains of probiotics throughout the feed digestion process. This method aims to enhance the nutritional value of the feed, diminish the presence of antinutritional factors, and improve the overall palatability, thereby facilitating the optimal utilization of NGF. This strategy holds the promise of not only replacing conventional feed options but also mitigating the pressing issue of grain scarcity. This paper delves into the practical applications of NGF and presents an overview of the latest research advancements in SFPE fermentation techniques, which can provide cutting-edge and valuable reference for researchers who devote themselves to research in this field in the future.

Keywords

anti-nutritional factors / high value utilization / non-grain feed raw materials / nutritional value / synergistic fermentation of probiotics and enzymes

Cite this article

Download citation ▾
Xiangrong Deng, Kai Chen, Dahai Jiang, Liming Lu. Advancements in synergistic fermentation of probiotics and enzymes for non-grain feed raw materials. Animal Research and One Health, 2025, 3(1): 31-42 DOI:10.1002/aro2.90

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tian, M., Feng, Y., He, X., Zhang, D., Wang, W., & Liu, D. (2022). Mycotoxins in livestock feed in China - current status and future challenges. Toxicon, 214, 112-120.

[2]

Ancuţa, P., & Sonia, A. (2020). Oil press-cakes and meals valorization through circular economy approaches: A review. Applied Sciences, 10(21), 1-30.

[3]

Hessle, A., Eriksson, M., Nadeau, E., Turner, T., & Johansson, B. (2008). Cold-pressed hempseed cake as a protein feed for growing cattle. Acta Agriculturae Scandinavica Section A Animal Science, 58(3), 136-145.

[4]

Karlsson, L., Finell, M., & Martinsson, K. (2010). Effects of increasing amounts of hempseed cake in the diet of dairy cows on the production and composition of milk. Animal, 4(11), 1854-1860.

[5]

Rao, M., Bast, A., & de Boer, A. (2021). Valorized food processing by-products in the EU: Finding the balance between safety, nutrition, and sustainability. Sustainability, 13(8), 1-18.

[6]

Švarc-Gajić J., Morais, S., Delerue-Matos, C., Vieira, E. F., & Spigno, G. (2020). Valorization potential of oilseed cakes by subcritical water extraction. Applied Sciences, 10(24), 1-13.

[7]

Hancox, L. R., Le Bon, M., Richards, P. J., Guillou, D., Dodd, C. E. R., & Mellits, K. H. (2015). Effect of a single dose of Saccharomyces cerevisiae var. boulardii on the occurrence of porcine neonatal diarrhoea. Animal, 9(11), 1756-1759.

[8]

Ma, L., Wang, L., Zhang, Z., & Xiao, D. (2023). Research progress of biological feed in beef cattle. Animals, 13(16), 1-16.

[9]

He, Y., Wang, H., Su, M., & Chen, W. (2018). Research progress on measures to improve utilization rate of unconventional feed. Feed Review, 09, 16-18.

[10]

Zhou, L., Dong, X., Yang, K., & Huang, Y. (2019). The application of non-grain feed ingredients in pig production. Swine Industry Science, 36(07), 36-38.

[11]

Meyer-Rochow, V. B., Pinent, M., Costa Neto, E. M., Grabowski, N. T., Fratini, F., & Mancini, S. (2022). Editorial: Insects as food and feed. Frontiers in Veterinary Science, 9, 1-3.

[12]

He, R., Yang, Y., Li, Y., Yang, M., Kong, L., & Yang, F. (2023). Recent progress in distiller’s grains: Chemical compositions and biological activities. Molecules, 28(22), 1-15.

[13]

Dey, S., Saxena, A., Kumar, Y., Maity, T., & Tarafdar, A. (2022). Understanding the antinutritional factors and bioactive compounds of kodo millet and little millet. Journal of Food Quality, 2022, 1-19.

[14]

Salim, R., Nehvi, I. B., Mir, R. A., Tyagi, A., Ali, S., & Bhat, O. M. (2023). A review on anti-nutritional factors: Unraveling the natural gateways to human health. Frontiers in Nutrition, 10, 1-15.

[15]

Duraiswamy, A., Sneha, A. N., Jebakani, K. S., Selvaraj, S., Pramitha, J. L., Selvaraj, R., Petchiammal, K. I., Kather Sheriff, S., Thinakaran, J., Rathinamoorthy, S., & Kumar, P. R. (2022). Genetic manipulation of anti-nutritional factors in major crops for a sustainable diet in future. Frontiers in Plant Science, 13, 1-26.

[16]

Pathaw, N., Devi, K. S., Sapam, R., Sanasam, J., Monteshori, S., Phurailatpam, S., Devi, H. C., Chanu, W. T., Wangkhem, B., & Mangang, N. L. (2022). A comparative review on the anti-nutritional factors of herbal tea concoctions and their reduction strategies. Frontiers in Nutrition, 9, 1-14.

[17]

Figueroa, J., Frías, D., Solà-Oriol, D., Tadich, T., Franco-Rosselló R., Nuñez, V., & Dwyer, D. M. (2019). Palatability in pigs, the pleasure of consumption 1. Journal of Animal Science, 97(5), 2165-2174.

[18]

Dong, W., Zhang, G., Li, Z., Liu, L., Zhang, S., & Li, D. (2020). Effects of different crude protein and dietary fiber levels on the comparative energy and nutrient utilization in sows and growing pigs. Animals, 10(3), 495.

[19]

Sheng, J., Miao, Y., & Fei, X. (2018). Effects of organic fertilizers made from distiller’s grains on the growth and development of flue-cured tobacco. Agricultural Biotechnology, 12(3), 158-164.

[20]

Dufourny, S., Antoine, N., Pitchugina, E., Delcenserie, V., Godbout, S., Douny, C., Scippo, M.-L., Froidmont, E., Rondia, P., Wavreille, J., & Everaert, N. (2021). Apple pomace and performance, intestinal morphology and microbiota of weaned piglets-A weaning strategy for gut health. Microorganisms, 9(3), 1-14.

[21]

Zhang, K., Qian, Q., Mao, Y., Xu, Y., Yang, Y., Chen, Y., & Wang, X. (2021). Characterization of growth phenotypes and gastrointestinal tract microbiota in sheep fed with caragana. Journal of Applied Microbiology, 131(6), 2763-2779.

[22]

Abdelatty, A. M., Mandouh, M. I., Al-Mokaddem, A. K., Mansour, H. A., Khalil, H. M. A., Elolimy, A. A., Ford, H., Farid, O. A. A., Prince, A., Sakr, O. G., Aljuaydi, S. H., & Bionaz, M. (2020). Influence of level of inclusion of Azolla leaf meal on growth performance, meat quality and skeletal muscle p70S6 kinase α abundance in broiler chickens. Animal, 14(11), 2423-2432.

[23]

Cherif, I., Arbouche, R., Arbouche, Y., Mennani, A., & Arbouche, F. (2022). Dehydrated husks and cake of prickly pear (Opuntia ficus-indica) processing for broiler feed: Effects on growth performance, carcass characteristics, and meat quality. Veterinary World, 15(3), 551-557.

[24]

Abdel-Hafeez, H. M., Saleh, E. S. E., Tawfeek, S. S., Youssef, I. M. I., & Abdel-Daim, A. S. A. (2018). Utilization of potato peels and sugar beet pulp with and without enzyme supplementation in broiler chicken diets: Effects on performance, serum biochemical indices and carcass traits. Journal of Animal Physiology and Animal Nutrition, 102(1), 56-66.

[25]

Hundal, J. S., Sharma, A., Pal, R., & Grewal, R. S. (2021). Harnessing the in vitro nutritional potential of different varieties of sugarcane tops silages enriched with molasses and bacterial inoculants as an unconventional feed resource. Sugar Tech, 23(4), 923-932.

[26]

Li, T., Che, P., Zhang, C., Zhang, B., Ali, A., & Zang, L. (2020). Recycling of spent mushroom substrate: Utilization as feed material for the larvae of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). PLoS One, 15(8), 1-12.

[27]

Jeong, S.-M., Khosravi, S., Mauliasari, I. R., Lee, B.-J., You, S.-G., & Lee, S.-M. (2021). Nutritional evaluation of cricket, Gryllus bimaculatus, meal as fish meal substitute for olive flounder, Paralichthys olivaceus, juveniles. Journal of the World Aquaculture Society, 52(4), 859-880.

[28]

Jeong, S. M., Khosravi, S., Kim, K. W., Lee, B. J., Hur, S. W., You, S. G., & Lee, S. M. (2022). Potential of mealworm, Tenebrio molitor, meal as a sustainable dietary protein source for juvenile black porgy, Acanthopagrus schlegelii. Aquaculture Reports, 22, 100956.

[29]

Al Sagan, A. A., Al-Abdulkader, A. M., Al-Dakhil, A. I., Khalil, S., & Al-Khuraish, M. M. (2021). Technical and economic potentials of the unconventional extruded dried Arabic bread wastes in broilers diets. Saudi Journal of Biological Sciences, 28(1), 262-271.

[30]

Yang, L., Zhao, Z., Deng, Y., Zhou, Z., & Hou, J. (2014). Toxicity induced by F. poae-contaminated feed and the protective effect of Montmorillonite supplementation in broilers. Food and Chemical Toxicology, 74, 120-130.

[31]

Deng, X., Yu, J., Liu, J., & Cai, H. (2019). Research and application progress of biological fermented feed in China. Chinese Journal of Animal Nutrition, 31(05), 1981-1989.

[32]

Jiang, D., Yang, M., Xu, J., Deng, L., Hu, C., Zhang, L., Sun, Y., Jiang, J., & Lu, L. (2023). Three-stage fermentation of the feed and the application on weaned piglets. Frontiers in Veterinary Science, 10, 1-8.

[33]

Mao, Y., Lu, C., Li, G., Zhao, H., & Deng, Y. (2019). Optimization of bacterial enzyme synergistic fermentation process of soybean meal. Food and Fermentation Industries, 45(14), 108-114.

[34]

Li, W., Din, K., Cao, P., & Zhao, L. (2020). Research and application progress of bacteria and enzymes synergy in feed. Chinese Journal of Animal Nutrition, 32(08), 3469-3475.

[35]

da Silva, L. C. A., Honorato, T. L., Cavalcante, R. S., Franco, T. T., & Rodrigues, S. (2012). Effect of pH and temperature on enzyme activity of chitosanase produced under solid stated fermentation by Trichoderma spp. Indian Journal of Microbiology, 52(1), 60-65.

[36]

Ke, W. C., Ding, W. R., Xu, D. M., Ding, L. M., Zhang, P., Li, F. D., & Guo, X. S. (2017). Effects of addition of malic or citric acids on fermentation quality and chemical characteristics of alfalfa silage. Journal of Dairy Science, 100(11), 8958-8966.

[37]

Guo, J., Xie, Y., Yu, Z., Meng, G., & Wu, Z. (2019). Effect of Lactobacillus plantarum expressing multifunctional glycoside hydrolases on the characteristics of alfalfa silage. Applied Microbiology and Biotechnology, 103(19), 7983-7995.

[38]

Feng, J., Chen, D., Yu, B., He, J., Yu, J., Mao, X., Huang, Z., Luo, Y., Luo, J., & Zheng, P. (2020). Effects of diets fermented with bacteria and enzyme on growth performance, nutrient digestibility, serum biochemical indices and intestinal barrier function of piglets. Chinese Journal of Animal Nutrition, 32(03), 1099-1108.

[39]

Samtiya, M., Aluko, R. E., & Dhewa, T. (2020). Plant food anti-nutritional factors and their reduction strategies: An overview. Food Production, Processing and Nutrition, 2(1), 1-14.

[40]

Guan, Y., Lv, H., Wu, G., Chen, J., Wang, M., Zhang, M., Pang, H., Duan, Y., Wang, L., & Tan, Z. (2023). Effects of lactic acid bacteria reducing the content of harmful fungi and mycotoxins on the quality of mixed fermented feed. Toxins, 15(3), 1-18.

[41]

Lau, N., Hummel, J., Kramer, E., & Hünerberg, M. (2022). Fermentation of liquid feed with lactic acid bacteria reduces dry matter losses, lysine breakdown, formation of biogenic amines, and phytate-phosphorus. Translational Animal Science, 6(1), 1-9.

[42]

Mathur, H., Beresford, T. P., & Cotter, P. D. (2020). Health benefits of lactic acid bacteria (LAB) fermentates. Nutrients, 12(6), 1-16.

[43]

Axel, C., Zannini, E., & Arendt, E. K. (2017). Mold spoilage of bread and its biopreservation: A review of current strategies for bread shelf life extension. Critical Reviews in Food Science and Nutrition, 57(16), 3528-3542.

[44]

Metzler-Zebeli, B. U., Koger, S., Sharma, S., Sener-Aydemir, A., Ruczizka, U., Kreutzmann, H., & Ladinig, A. (2022). Short-chain fatty acids modulate permeability, motility and gene expression in the porcine fetal Jejunum ex vivo. Nutrients, 14(12), 1-15.

[45]

Lin, K. H., & Yu, Y. H. (2020). Evaluation of Bacillus licheniformis-fermented feed additive as an antibiotic substitute: Effect on the growth performance, diarrhea incidence, and cecal microbiota in weaning piglets. nimals, 10(9), 1-16.

[46]

Wang, C., Wei, S., Xu, B., Hao, L., Su, W., Jin, M., & Wang, Y. (2021). Bacillus subtilis and Enterococcus faecium co-fermented feed regulates lactating sow’s performance, immune status and gut microbiota. Microbial Biotechnology, 14(2), 614-627.

[47]

Li, Q., Yi, P., Zhang, J., Shan, Y., Lin, Y., Wu, M., Wang, K., Tian, G., Li, J., & Zhu, T. (2023). Bioconversion of food waste to crayfish feed using solid-state fermentation with yeast. Environmental Science and Pollution Research, 30(6), 15325-15334.

[48]

Cui, Y., Li, J., Deng, D., Lu, H., Tian, Z., Liu, Z., & Ma, X. (2021). Solid-state fermentation by Aspergillus Niger and Trichoderma koningii improves the quality of tea dregs for use as feed additives. PLoS One, 16(11), 1-20.

[49]

Apata, D. F. (2011). Effect of Terminalia catappa fruit meal fermented by Aspergillus Niger as replacement of maize on growth performance, nutrient digestibility, and serum biochemical profile of broiler chickens. Biotechnology Research International, 2011, 907546ss.

[50]

Andersson-Rolf, A., Zilbauer, M., Koo, B. K., & Clevers, H. (2017). Stem cells in repair of gastrointestinal epithelia. Physiology, 32(4), 278-289.

[51]

Bloemendaal, A. L., Buchs, N. C., George, B. D., & Guy, R. J. (2016). Intestinal stem cells and intestinal homeostasis in health and in inflammation: A review. Surgery, 159(5), 1237-1248.

[52]

Ma, N., Chen, X., Johnston, L. J., & Ma, X. (2022). Gut microbiota-stem cell niche crosstalk: A new territory for maintaining intestinal homeostasis. Imeta, 1(4), 1-1.

[53]

Ma, N., Sun, Y., Chen, J., Qi, Z., Liu, C., & Ma, X. (2022). Micro-coevolution of genetics rather than diet with enterotype in pigs. Frontiers in Nutrition, 9, 1-11.

[54]

Schwarzer, M., Makki, K., Storelli, G., Machuca-Gayet, I., Srutkova, D., Hermanova, P., Martino, M. E., Balmand, S., Hudcovic, T., Heddi, A., Rieusset, J., Kozakova, H., Vidal, H., & Leulier, F. (2016). Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science, 351(6275), 854-857.

[55]

Jones, R. M., Luo, L., Ardita, C. S., Richardson, A. N., Kwon, Y. M., Mercante, J. W., Alam, A., Gates, C. L., Wu, H., Swanson, P. A., Lambeth, J. D., Denning, P. W., & Neish, A. S. (2013). Symbiotic lactobacilli stimulate gut epithelial proliferation via nox-mediated generation of reactive oxygen species. The Embo journal, 32(23), 3017-3028.

[56]

Hou, Q., Ye, L., Liu, H., Huang, L., Yang, Q., Turner, J. R., & Yu, Q. (2018). Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22. Cell Death and Differentiation, 25(9), 1657-1670.

[57]

Donia, M. S., & Fischbach, M. A. (2015). Human Microbiota. Small molecules from the human microbiota. Science, 349(6246), 1254766.

[58]

Du, Z., Yamasaki, S., Oya, T., & Cai, Y. (2023). Cellulase-lactic acid bacteria synergy action regulates silage fermentation of woody plant. Biotechnology for Biofuels and Bioproducts, 16(1), 125.

[59]

Arriola, K. G., Oliveira, A. S., Ma, Z. X., Lean, I. J., Giurcanu, M. C., & Adesogan, A. T. (2017). A meta-analysis on the effect of dietary application of exogenous fibrolytic enzymes on the performance of dairy cows. Journal of Dairy Science, 100(6), 4513-4527.

[60]

Liu, L., Zhang, R., Deng, Y., Zhang, Y., Xiao, J., Huang, F., Wen, W., & Zhang, M. (2017). Fermentation and complex enzyme hydrolysis enhance total phenolics and antioxidant activity of aqueous solution from rice bran pretreated by steaming with α-amylase. Food Chemistry, 221, 636-643.

[61]

Rebolé A., Ortiz, L. T., Rodríguez, M. L., Alzueta, C., Treviño, J., & Velasco, S. (2010). Effects of inulin and enzyme complex, individually or in combination, on growth performance, intestinal microflora, cecal fermentation characteristics, and Jejunal histomorphology in broiler chickens fed a wheat- and barley-based diet. Poultry Science, 89(2), 276-286.

[62]

Ibrahim, D., El-sayed, H. I., Mahmoud, E. R., El-Rahman, G. I. A., Bazeed, S. M., Abdelwarith, A. A., Elgamal, A., Khalil, S. S., Younis, E. M., Kishawy, A. T. Y., Davies, S. J., & Metwally, A. E. (2023). Impacts of solid-state fermented barley with fibrolytic exogenous enzymes on feed utilization, and antioxidant status of broiler chickens. Veterinary Sciences, 10(10), 594.

[63]

Shuai, C., Chen, D., Yu, B., Luo, Y., Zheng, P., Huang, Z., Yu, J., Mao, X., Yan, H., & He, J. (2023). Effect of fermented rapeseed meal on growth performance, nutrient digestibility, and intestinal health in growing pigs. Animal Nutrition, 15, 420-429.

[64]

Xie, H., Wang, Y., Zhang, J., Chen, J., Wu, D., & Wang, L. (2015). Study of the fermentation conditions and the antiproliferative activity of rapeseed peptides by bacterial and enzymatic cooperation. International Journal of Food Science and Technology, 50(3), 619-625.

[65]

Lin, B., Yan, J., Zhong, Z., & Zheng, X. (2020). A study on the preparation of microbial and nonstarch polysaccharide enzyme synergistic fermented maize cob feed and its feeding efficiency in finishing pigs. BioMed Research International, 2020(2), 1-12.

[66]

de Almeida, G. A. P., de Andrade Ferreira, M., de Lima Silva, J., Chagas, J. C. C., Véras, A. S. C., de Barros, L. J. A., & de Almeida, G. L. P. (2018). Sugarcane bagasse as exclusive roughage for dairy cows in smallholder livestock system. Asian-Australasian Journal of Animal Sciences, 31(3), 379-385.

[67]

So, S., Cherdthong, A., & Wanapat, M. (2020). Improving sugarcane bagasse quality as ruminant feed with Lactobacillus, cellulase, and molasses. Journal of Animal Science And Technology, 62(5), 648-658.

[68]

Liehr, M., Mereu, A., Pastor, J. J., Quintela, J. C., Staats, S., Rimbach, G., & Ipharraguerre, I. R. (2017). Olive oil bioactives protect pigs against experimentally-induced chronic inflammation independently of alterations in gut microbiota. PLoS One, 12(3), e0174239.

[69]

Fathy, S. A., Mahmoud, A. E., Rashad, M. M., Ezz, M. K., & Mohammed, A. T. (2018). Improving the nutritive value of olive pomace by solid state fermentation of Kluyveromyces marxianus with simultaneous production of Gallic acid. International Journal of Recycling of Organic Waste in Agriculture, 7(2), 135-141.

[70]

Lafka, T.-I., Lazou, A. E., Sinanoglou, V. J., & Lazos, E. S. (2011). Phenolic and antioxidant potential of olive oil mill wastes. Food Chemistry, 125(1), 92-98.

[71]

Ibrahim, D., Moustafa, A., Shahin, S. E., Sherief, W., Abdallah, K., Farag, M. F. M., Nassan, M. A., & Ibrahim, S. M. (2021). Impact of fermented or enzymatically fermented dried olive pomace on growth, expression of digestive enzyme and glucose transporter genes, oxidative stability of frozen meat, and economic efficiency of broiler chickens. Frontiers in Veterinary Science, 8, 644325.

[72]

Dahdouh, A., Khay, I., Le Brech, Y., El Maakoul, A., & Bakhouya, M. (2023). Olive oil industry: A review of waste stream composition, environmental impacts, and energy valorization paths. Environmental Science and Pollution Research, 30(16), 45473-45497.

[73]

Abid, K., Jabri, J., Ammar, H., Ben Said, S., Yaich, H., Malek, A., Rekhis, J., López, S., & Kamoun, M. (2020). Effect of treating olive cake with fibrolytic enzymes on feed intake, digestibility and performance in growing lambs. Animal Feed Science and Technology, 261, 114405.

[74]

Abid, K., Jabri, J., Yaich, H., Malek, A., Rekhis, J., & Kamoun, M. (2023). Bioconversion of alperujo into an alternative feed for ruminants by pretreatment with live yeasts and/or exogenous fibrolytic enzymes. Environmental Science and Pollution Research, 30(23), 64747-64754.

[75]

Chen, K., Deng, X., Jiang, D., Qin, L., Lu, M., Jiang, W., Yang, M., Zhang, L., Jiang, J., & Lu, L. (2024). Efficient conversion of distillers grains as feed ingredient by synergy of probiotics and enzymes. Frontiers in Microbiology, 15, 1403011.

RIGHTS & PERMISSIONS

2024 The Author(s). Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

615

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/