Genome-wide association study and genomic prediction for growth traits in spotted sea bass (Lateolabrax maculatus) using insertion and deletion markers

Chong Zhang , Yonghang Zhang , Cong Liu , Lingyu Wang , Yani Dong , Donglei Sun , Haishen Wen , Kaiqiang Zhang , Xin Qi , Yun Li

Animal Research and One Health ›› 2024, Vol. 2 ›› Issue (4) : 400 -416.

PDF
Animal Research and One Health ›› 2024, Vol. 2 ›› Issue (4) : 400 -416. DOI: 10.1002/aro2.87
ARTICLE

Genome-wide association study and genomic prediction for growth traits in spotted sea bass (Lateolabrax maculatus) using insertion and deletion markers

Author information +
History +
PDF

Abstract

Spotted sea bass (Lateolabrax maculatus) is a species of significant economic importance in aquaculture. However, genetic degeneration, such as declining growth performance, has severely impeded industry development, necessitating urgent genetic improvement. Here, we conducted a genomewide association study (GWAS) and genomic prediction for growth traits using insertion and deletion (InDel) markers, and systematically compared the results with our previous studies using single nucleotide polymorphism (SNP) markers. A total of 97 significant InDels including a 6 bp insertion in an exon region were identified. It is worth noting that only 5 and 1 candidate genes for DY and TS populations were also detected in previous GWAS using SNPs, and numerous novel genes including c4b, fgf4, and dnajb9 were identified as vital candidate genes. Moreover, several novel growth-related procedures, such as the growth and development of the bone and muscle, were also detected. These findings indicated that InDel-based GWAS can provide valuable complement to SNP-based studies. The comparison of genomic predictive performance for total length trait under different marker selection strategies and genomic selection models indicated that GWAS selection strategy exhibits more stable predictive performance compared to the evenly selection strategy. Additionally, support vector machine model demonstrated better predictive accuracy and efficiency than traditional best linear unbiased prediction and Bayes models. Furthermore, the superior predictive performance using InDel markers compared to SNP markers highlighted the potential of InDels to enhance genomic predictive accuracy and efficiency. Our results carry significant implications for dissecting genetic mechanisms and contributing genetic improvement of growth traits in spotted sea bass through genomic resources.

Keywords

genomic prediction / growth traits / GWAS / InDel / Lateolabrax maculatus

Cite this article

Download citation ▾
Chong Zhang, Yonghang Zhang, Cong Liu, Lingyu Wang, Yani Dong, Donglei Sun, Haishen Wen, Kaiqiang Zhang, Xin Qi, Yun Li. Genome-wide association study and genomic prediction for growth traits in spotted sea bass (Lateolabrax maculatus) using insertion and deletion markers. Animal Research and One Health, 2024, 2(4): 400-416 DOI:10.1002/aro2.87

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li, N., Zhou, T., Geng, X., Jin, Y., Wang, X., Liu, S., Xu, X., Gao, D., Li, Q., & Liu, Z. (2018). Identification of novel genes significantly affecting growth in catfish through GWAS analysis. Molecular Genetics and Genomics, 293(3), 587–599.

[2]

Zhang, C., Wen, H., Zhang, Y., Zhang, K., Qi, X., & Li, Y. (2023). First genome-wide association study and genomic prediction for growth traits in spotted sea bass (Lateolabrax maculatus) using whole-genome resequencing. Aquaculture, 566, 739194.

[3]

Gong, J., Zhao, J., Ke, Q., Li, B., Zhou, Z., Wang, J., Zhou, T., Zheng, W., & Xu, P. (2021). First genomic prediction and genome-wide association for complex growth-related traits in Rock Bream (Oplegnathus fasciatus). Evolutionary Applications, 15(4), 523–536.

[4]

Gjedrem, T. (2012). Genetic improvement for the development of efficient global aquaculture: A personal opinion review. Aquaculture, 344, 12–22.

[5]

Liu, G., Dong, L., Gu, L., Han, Z., Zhang, W., Fang, M., & Wang, Z. (2019). Evaluation of genomic selection for seven economic traits in yellow drum (Nibea albiflora). Marine Biotechnology, 21(6), 806–812.

[6]

Chandhini, s., Trumboo, B., Jose, S., Varghese, T., Manchi, R., & Rejish Kumar, V. J. (2021). Insulin-like growth factor signalling and its significance as a biomarker in fish and shellfish research. Fish Physiology and Biochemistry, 47(4), 1–21.

[7]

De Santis, C., & Jerry, D. (2007). Candidate growth genes in finfish - where should we be looking? Aquaculture, 272(1–4), 22–38.

[8]

Landemaine, A., Ramirez-Martinez, A., Monestier, O., Sabin, N., Rescan, P. Y., Olson, E. N., & Gabillard, J. C. (2019). Trout myomaker contains 14 minisatellites and two sequence extensions but retains fusogenic function. Journal of Biological Chemistry, 294(16), 6364–6374.

[9]

Geng, X., Liu, S., Yuan, Z., Jiang, Y., Zhi, D., & Liu, Z. (2017). A genome-wide association study reveals that genes with functions for bone development are associated with body conformation in catfish. Marine Biotechnology, 19(6), 1–9.

[10]

Ning, X., Li, X., Wang, J., Zhang, X., Kong, L., Meng, D., Wang, H., Li, Y., Zhang, L., Wang, S., Hu, X., & Bao, Z. (2019). Genome-wide association study reveals E2F3 as the candidate gene for scallop growth. Aquaculture, 511, 734216.

[11]

Zondervan, K. T., & Cardon, L. R. (2004). The complex interplay among factors that influence allelic association. Nature Reviews Genetics, 5(2), 89–100.

[12]

Dong, L., Xiao, S., Wang, Q., & Wang, Z. (2016). Comparative analysis of the GBLUP, emBayesB, and GWAS algorithms to predict genetic values in large yellow croaker (Larimichthys crocea). BMC Genomics, 17(1), 460.

[13]

Zhou, Q., Su, Z., Li, Y., Liu, Y., Wang, L., Lu, S., Wang, S., Gan, T., Liu, F., Zhou, X., Wei, M., Liu, G., & Chen, S. (2019). Genome-wide association mapping and gene expression analyses reveal genetic mechanisms of disease resistance variations in Cynoglossus semilaevis. Frontiers in Genetics, 10, 1167.

[14]

Yang, M., Wang, Q., Chen, J., Wang, Y., Zhang, Y., & Qin, Q. (2021). Identification of candidate SNPs and genes associated with anti-RGNNV using GWAS in the red-spotted grouper, Epinephelus akaara. Fish & Shellfish Immunology, 112, 31–37.

[15]

Wu, Y., Zhou, Z., Pan, Y., Zhao, J., Bai, H., Chen, B., Zhang, X., Pu, F., Chen, J., & Xu, P. (2021). GWAS identified candidate variants and genes associated with acute heat tolerance of large yellow croaker. Aquaculture, 540, 736696.

[16]

Yu, H., Sui, M., Yang, Z., Cui, C., Hou, X., Liu, Z., Wang, X., Dong, X., Zhao, A., Wang, Y., Huang, X., Hu, J., & Bao, Z. (2023). Deciphering the genetic basis and prediction genomic estimated breeding values of heat tolerance in Zhikong scallop Chlamys farreri. Aquaculture, 565, 739090.

[17]

San, L.-Z., Liu, B.-S., Liu, B., Zhu, K.-C., Guo, L., Guo, H.-Y., Zhang, N., Jiang, S.-G., & Zhang, D.-C. (2021). Genome-wide association study reveals multiple novel SNPs and putative candidate genes associated with low oxygen tolerance in golden pompano Trachinotus ovatus (Linnaeus 1758). Aquaculture, 544, 737098.

[18]

Zeng, J., Long, F., Wang, J., Zhao, J., Ke, Q., Gong, J., Bai, Y., Deng, Y., Jiang, P., Qu, A., Tong, B., Suo, N., Wang, Y., He, Q., Pu, F., Zhou, T., & Xu, P. (2022). GWAS reveals heritable individual variations in the inherent swimming performance of juvenile large yellow croaker. Aquaculture, 559, 738419.

[19]

Zhou, Z., Han, K., Wu, Y., Bai, H., Ke, Q., Pu, F., Wang, Y., & Xu, P. (2019). Genome-wide association study of growth and body-shape-related traits in large yellow croaker (Larimichthys crocea) using ddRAD sequencing. Marine Biotechnology, 21(5), 655–670.

[20]

Wu, L., Yang, Y., Li, B., Huang, W., Wang, X., Liu, X., Meng, Z., & Xia, J. (2019). First genome-wide association analysis for growth traits in the largest coral reef-dwelling bony fishes, the giant grouper (Epinephelus lanceolatus). Marine Biotechnology, 21(5), 707–717.

[21]

Wu, S. X., Zeng, Q. F., Han, W. T., Wang, M. Y., Ding, H., Teng, M. X., Wang, M. Y., Li, P. Y., Gao, X., Bao, Z. M., Wang, B., & Hu, J. J. (2024). Deciphering the population structure and genetic basis of growth traits from whole-genome resequencing of the leopard coral grouper (Plectropomus leopardus). Zoological Research, 45(2), 329–340.

[22]

Lu, S., Liu, Y., Qu, S., Zhou, Q., Wang, L., Zhang, T., Xu, W., Zhang, M., Song, Y., Wang, J., Zhu, C., & Chen, S. (2023). Genomic prediction of survival against Vibrio harveyi in leopard coral grouper (Plectropomus leopardus) using GBLUP, weighted GBLUP, and BayesCπ. Aquaculture, 572, 739536.

[23]

Zhao, J., Bai, H., Ke, Q., Li, B., Zhou, Z., Wang, H., Chen, B., Pu, F., Zhou, T., & Xu, P. (2021). Genomic selection for parasitic ciliate Cryptocaryon irritans resistance in large yellow croaker. Aquaculture, 531, 735786.

[24]

Shan, X., Xu, T., Ma, Z., Zhang, X., Ruan, Z., Chen, J., Shi, Q., & You, X. (2021). Genome-wide association improves genomic selection for ammonia tolerance in the orange-spotted grouper (Epinephelus coioides). Aquaculture, 533, 736214.

[25]

Dong, L., Xiao, S., Chen, J., Wan, L., & Wang, Z. (2016). Genomic selection using extreme phenotypes and pre-selection of SNPs in large yellow croaker (Larimichthys crocea). Marine Biotechnology, 18(5), 575–583.

[26]

García-Ballesteros, S., Fernández, J., Kause, A., & Villanueva, B. (2022). Predicted genetic gain for carcass yield in rainbow trout from indirect and genomic selection. Aquaculture, 554, 738119.

[27]

Wang, J., Chen, L., Li, B., Xu, J., Feng, J., Dong, C., Zhou, T., & Xu, P. (2021). Performance of genome prediction for morphological and growth-related traits in Yellow River carp. Aquaculture, 536, 736463.

[28]

Sukhavachana, S., Senanan, W., Tunkijjanukij, S., & Poompuang, S. (2022). Improving genomic prediction accuracy for harvest traits in Asian seabass (Lates calcarifer, Bloch 1790) via marker selection. Aquaculture, 550, 737851.

[29]

Ding, J., Zhang, Y., Li, X., Wang, J., Gao, X., Xiang, Q., Gao, Z., Lan, T., Jia, S., Lu, M., Meng, R., Wu, X., Zhu, J., & Shen, W. (2024). Genomic selection for hypoxia tolerance in large yellow croaker. Aquaculture, 579, 740212.

[30]

Chen, F., Fengling, L., Luo, M., Han, Y.-S., Cheng, H., & Zhou, R. (2019). The genome-wide landscape of small insertion and deletion mutations in Monopterus albus. Journal of Genetics and Genomics, 46(2), 75–86.

[31]

Zhao, H., Wu, M., Wang, S., Yu, X., Li, Z., Dang, R., & Sun, X. (2018). Identification of a novel 24 bp insertion–deletion (indel) of the androgen receptor gene and its association with growth traits in four indigenous cattle breeds. Archives of Animal Breeding, 61(1), 71–78.

[32]

Gao, Q., Yue, G., Li, W., Wang, J., Xu, J., & Yin, Y. (2012). Recent progress using high-throughput sequencing technologies in plant molecular breeding. Journal of Integrative Plant Biology, 54(4), 215–227.

[33]

Fei, Q.-J., Ding, H.-C., & Yan, X.-H. (2021). Development of InDel markers and establishment of a specific molecular marker of the new strain (SW-81) in Pyropia haitanensis. Algal Research, 60, 102480.

[34]

Lu, B. R., Cai, X., & Xin, J. (2009). Efficient indica and japonica rice identification based on the InDel molecular method: Its implication in rice breeding and evolutionary research. Progress in Natural Science, 19(10), 1241–1252.

[35]

Zhou, Z., Huang, B., Lai, Z., Li, S., Wu, F., Qu, K., Jia, Y., Hou, J., Liu, J., Lei, C., & Dang, R. (2019). The distribution characteristics of a 19-bp indel of the PLAG1 gene in Chinese cattle. Animals, 9(12), 1082.

[36]

Lv, H. H., Yang, L. M., Kang, J. G., Wang, Q. B., Wang, X. W., Fang, Z. Y., Liu, Y. M., Zhuang, M., Zhang, Y. Y., Lin, Y., Yang, Y. h., Xie, B. y., Liu, B., & Liu, J. S. (2013). Development of InDel markers linked to Fusarium wilt resistance in cabbage. Molecular Breeding, 32(4), 961–967.

[37]

Vasemägi, A., Gross, R., Palm, D., Paaver, T., Primmer, C. R. (2010). Discovery and application of insertion-deletion (INDEL) polymorphisms for QTL mapping of early life-history traits in Atlantic salmon. BMC Genomics, 11(1), 156.

[38]

Ramos, C., Castro Perez, E., C, M., & Trejos, D. (2018). Analysis of 30 INDEL polymorphic markers in the Panamanian population: Gene admixture estimates, population structure and forensic parameters. Journal of Forensic Research, 9(1), 1–8.

[39]

Bastos-Rodrigues, L., Pimenta, J., & Pena, S. (2006). The genetic structure of human populations studied through short insertion-deletion polymorphisms. Annals of Human Genetics, 70(5), 658–665.

[40]

Väli, Ü., Brandström, M., Johansson, M., & Ellegren, H. (2008). Insertion-deletion polymorphisms (indels) as genetic markers in natural populations. BMC Genetics, 9(1), 8.

[41]

Yang, J., He, J., Wang, D., Shi, En, Yang, W., Geng, Q., & Wang, Z. (2016). Progress in research and application of InDel markers. Biodiversity Science, 24(2), 237–243.

[42]

Li, X., Gao, W., Guo, H., Zhang, X., Fang, D. D., & Lin, Z. (2014). Development of EST-based SNP and InDel markers and their utilization in tetraploid cotton genetic mapping. BMC Genomics, 15(1), 1046.

[43]

Sun, Y., Wen, H., Tian, Y., Mao, X., Li, X., Li, J., Hu, Y., Liu, Y., Li, J., & Li, Y. (2021). HSP90 and HSP70 families in Lateolabrax maculatus: Genome-wide identification, molecular characterization, and expression profiles in response to various environmental stressors. Frontiers in Physiology, 12, 784803.

[44]

Wang, L. Y., Tian, Y., Wen, H. S., Yu, P., Liu, Y., Qi, X., Gao, Z. C., Zhang, K. Q., & Li, Y. (2020). Slc4 gene family in spotted sea bass (Lateolabrax maculatus): Structure, evolution, and expression profiling in response to alkalinity stress and salinity changes. Genes, 11(11), 1271.

[45]

Liu, Y., Wang, H., Wen, H., Shi, Y., Zhang, M., Qi, X., Zhang, K., Gong, Q., Li, J., He, F., & Hu, Y. (2020). First high-density linkage map and QTL fine mapping for growth-related traits of spotted sea bass (Lateolabrax maculatus). Marine Biotechnology, 22(4), 526–538.

[46]

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9), 1297–1303.

[47]

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., de Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). Plink: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81(3), 559–575.

[48]

Cingolani, P., Platts, A., Wang, L., Coon, M., Nguyen, T., Luan, W., Land, S., Lu, X., & Ruden, D. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly, 6(2), 80–92.

[49]

Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S. J., & Marra, M. A. (2009). Circos: An information aesthetic for comparative genomics. Genome Research, 19(9), 1639–1645.

[50]

Alexander, D., Novembre, J., & Lange, K. (2009). Fast Model-based estimation of ancestry in unrelated individuals. Genome Research, 19(9), 1655–1664.

[51]

Zhou, X., & Stephens, M. (2012). Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 44(7), 821–824.

[52]

Yin, L., Zhang, H., Tang, Z., Xu, J., Yin, D., Zhang, Z., Yuan, X., Zhu, M., Zhao, S., Li, X., & Liu, X. (2021). rMVP: A memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genomics, Proteomics & Bioinformatics, 19(4), 619–628.

[53]

Swain, J. K., Larsen, A., Bøgwald, J., & Dalmo, R. (2009). Interleukin-17D in Atlantic salmon (Salmo salar): Molecular characterization, 3D modelling and promoter analysis. Fish & Shellfish Immunology, 27(5), 647–659.

[54]

Spindel, J. E., Begum, H., Akdemir, D., Collard, B., Redoña, E., Jannink, J. L., & McCouch, S. (2016). Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. Heredity, 116(4), 395–408.

[55]

Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819–1829.

[56]

Sun, X., Habier, D., Fernando, R. L., Garrick, D. J., & Dekkers, J. C. M. (2011). Genomic breeding value prediction and QTL mapping of QTLMAS2010 data using Bayesian Methods. BMC Proceedings, 5(S3), S13.

[57]

Li, J., Das, K., Fu, G., Li, R., & Wu, R. (2011). The Bayesian lasso for genome-wide association studies. Bioinformatics, 27(4), 516–523.

[58]

Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). Kernlab - an S4 package for kernel methods in R. Journal of Statistical Software, 11(9), 1–20.

[59]

Howard, R., Carriquiry, A., & Beavis, W. (2014). Parametric and nonparametric statistical methods for genomic selection of traits with additive and epistatic genetic architectures. G3-Genes Genomes Genetics, 4(6), 1027–1046.

[60]

Endelman, J. B. (2011). Ridge regression and other kernels for genomic selection with R package rrBLUP. The Plant Genome, 4(3), 250–255.

[61]

Pérez, P., & de los Campos, G. (2014). Genome-wide regression and prediction with the BGLR statistical package. Genetics, 198(2), 483–495.

[62]

Rosenberg, N. A., Huang, L., Jewett, E. M., Szpiech, Z. A., Jankovic, I., & Boehnke, M. (2010). Genome-wide association studies in diverse populations. Nature Reviews Genetics, 11(5), 356–366.

[63]

Whaley, K., & Schwaeble, W. (1997). Complement and complement deficiencies. Seminars in Liver Disease, 17(04), 297–310.

[64]

Garry, D. J., Meeson, A., Elterman, J., Zhao, Y., Yang, P., Bassel-Duby, R., & Williams, R. S. (2000). Myogenic stem cell function is impaired in mice lacking the forkhead/winged helix protein MNF. Proceedings of the National Academy of Sciences of the United States of America, 97(10), 5416–5421.

[65]

Martelly, I., Soulet, L., Bonnavaud, S., Cebrian, J., Gautron, J., & Barritault, D. (2020). Differential expression of FGF receptors and of myogenic regulatory factors in primary cultures of satellite cells originating from fast (EDL) and slow (Soleus) twitch rat muscles. Cellular & Molecular Biology, 46, 1239–1248.

[66]

Brewer, J. R., Mazot, P., & Soriano, P. (2016). Genetic insights into the mechanisms of Fgf signaling. Genes & Development, 30(7), 751–771.

[67]

Zhao, P., Caretti, G., Mitchell, S., McKeehan, W. L., Boskey, A. L., Pachman, L. M., Sartorelli, V., & Hoffman, E. P. (2006). Fgfr4 is required for effective muscle regeneration in vivo. Delineation of a MyoD-Tead2-Fgfr4 transcriptional pathway. Journal of Biological Chemistry, 281(1), 429–438.

[68]

Di Giovanni, S., Faden, A. I., Yakovlev, A., Duke-Cohan, J. S., Finn, T., Thouin, M., Knoblach, S., De Biase, A., Bregman, B. S., & Hoffman, E. P. (2005). Neuronal plasticity after spinal cord injury: Identification of a gene cluster driving neurite outgrowth. The FASEB Journal, 19(1), 153–154.

[69]

Putz, U., Harwell, C., & Nedivi, E. (2005). Soluble CPG15 expressed during early development rescues cortical progenitors from apoptosis. Nature Neuroscience, 8(3), 322–331.

[70]

Su, S., Li, H., Du, F., Zhang, C., Li, X., Jing, X., Liu, L., Li, Z., Yang, X., Xu, P., Yuan, X., Zhu, J., & Bouzoualegh, R. (2018). Combined QTL and genome scan analyses with the help of 2b-RAD identify growth-associated genetic markers in a new fast-growing carp strain. Frontiers in Genetics, 9, 592.

[71]

Liu, Y., Wen, H., Qi, X., Zhang, X., Zhang, K., Fan, H., Tian, Y., Hu, Y., & Li, Y. (2019). Genome-wide identification of the Na+/H+ exchanger gene family in Lateolabrax maculatus and its involvement in salinity regulation. Comparative Biochemistry and Physiology, Part D: Genomics & Proteomics, 29, 286–298.

[72]

Danwattananusorn, T., Fagutao, F. F., Shitara, A., Kondo, H., Aoki, T., Nozaki, R., & Hirono, I. (2011). Molecular characterization and expression analysis of heat shock proteins 40, 70 and 90 from kuruma shrimp Marsupenaeus japonicus. Fisheries Science, 77(6), 929–937.

[73]

Qiu, X. B., Shao, Y. M., Miao, S., & Wang, L. (2006). The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cellular and Molecular Life Sciences CMLS, 63(22), 2560–2570.

[74]

Pullen, M. Y., Weihl, C. C., & True, H. L. (2020). Client processing is altered by novel myopathy-causing mutations in the HSP40 J domain. PLoS One, 15(6), e0234207.

[75]

Amin-Wetzel, N., Saunders, R. A., Kamphuis, M. J., Rato, C., Preissler, S., Harding, H. P., & Ron, D. (2017). A J-protein Co-chaperone recruits BiP to monomerize IRE1 and repress the unfolded protein response. Cell, 171(7), 1625–1637.e13.

[76]

Huang, Y., Arora, K., Mun, K. S., Yang, F., Moon, C., Yarlagadda, S., Jegga, A., Weaver, T., & Naren, A. P. (2019). Targeting DNAJB9, a novel ER luminal co-chaperone, to rescue ΔF508-CFTR. Scientific Reports, 9(1), 9808.

[77]

Sun, F., Liao, Y., Qu, X., Xiao, X., Hou, S., Chen, Z., Huang, H., Li, P., & Fu, S. (2020). Hepatic DNAJB9 drives anabolic biasing to reduce steatosis and obesity. Cell Reports, 30(6), 1835–1847.e1839.

[78]

Lee, H. J., Kim, J. M., Kim, K. H., Heo, J. I., Kwak, S. J., & Han, J. A. (2015). Genotoxic stress/p53-induced DNAJB9 inhibits the pro-apoptotic function of p53. Cell Death & Differentiation, 22(1), 86–95.

[79]

Tong, H., & Nikoloski, Z. (2021). Machine learning approaches for crop improvement: Leveraging phenotypic and genotypic big data. Journal of Plant Physiology, 257, 153354.

[80]

Wang, K., Yang, B., Li, Q., & Liu, S. K. (2022). Systematic evaluation of genomic prediction algorithms for genomic prediction and breeding of aquatic animals. Genes, 13(12), 2247.

[81]

Ornella, L., Pérez, P., Tapia, E., González-Camacho, J. M., Burgueño, J., Zhang, X., Singh, S., Vicente, F. S., Bonnett, D., Dreisigacker, S., Singh, R., Long, N., & Crossa, J. (2014). Genomic-enabled prediction with classification algorithms. Heredity, 112(6), 616–626.

[82]

Schnable, P. S., & Springer, N. M. (2013). Progress toward understanding heterosis in crop plants. Annual Review of Plant Biology, 64(1), 71–88.

[83]

Xiao, Y., Jiang, S., Cheng, Q., Wang, X., Yan, J., Zhang, R., Qiao, F., Ma, C., Luo, J., Li, W., Liu, H., Yang, W., Song, W., Meng, Y., Warburton, M. L., Zhao, J., & Yan, J. (2021). The genetic mechanism of heterosis utilization in maize improvement. Genome Biology, 22(1), 148.

[84]

Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O., Jarquín, D., de los Campos, G., Burgueño, J., González-Camacho, J. M., Pérez-Elizalde, S., Beyene, Y., Dreisigacker, S., Singh, R., Zhang, X., Gowda, M., Roorkiwal, M., Rutkoski, J., & Varshney, R. K. (2017). Genomic selection in plant breeding: Methods, models, and perspectives. Trends in Plant Science, 22(11), 961–975.

[85]

Morgante, F., Huang, W., Maltecca, C., & Mackay, T. F. C. (2018). Effect of genetic architecture on the prediction accuracy of quantitative traits in samples of unrelated individuals. Heredity, 120(6), 500–514.

RIGHTS & PERMISSIONS

2024 The Author(s). Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/