The effects of organic acids on broiler chicken nutrition: A review

Prosper Chukwudi , Paulinus Ikenna Umeugokwe , Nnanna Ephraim Ikeh , Bright Chigozie Amaefule

Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (1) : 43 -53.

PDF
Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (1) : 43 -53. DOI: 10.1002/aro2.85
REVIEW

The effects of organic acids on broiler chicken nutrition: A review

Author information +
History +
PDF

Abstract

To meet the requirements of the modern chicken industry, high levels of productivity and efficient feed conversion are necessary. This can be partially accomplished by using particular feed additives. The prohibition of antibiotic usage has compelled researchers to explore alternative options to antibiotics. Organic acids and their salts are commonly employed in poultry farming as substitutes for antibiotic growth promoters. These compounds are distinguished by the presence of a carboxylic acid group and are classified as weak acids. They function as intermediates in the degradation of amino acids, sugars, and fatty acids. Organic acids encompass a wide range of chemical substances that are commonly found naturally as fundamental constituents of animal tissues, plants, and microorganisms. Organic acids decrease the pH of the intestinal tract, promoting the growth of beneficial microorganisms. This enhances the digestion of nutrients and increases immunity in chickens, eliminating the need for antibiotics. This review provides an overview of recent research findings regarding the antimicrobial effect of organic acids and the impact of organic acids on growth performance, intestinal health, and carcass and organ characteristics of broiler chickens.

Keywords

acidifiers / antibiotic alternatives / antimicrobial / broiler chicken nutrition / performance

Cite this article

Download citation ▾
Prosper Chukwudi, Paulinus Ikenna Umeugokwe, Nnanna Ephraim Ikeh, Bright Chigozie Amaefule. The effects of organic acids on broiler chicken nutrition: A review. Animal Research and One Health, 2025, 3(1): 43-53 DOI:10.1002/aro2.85

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Khan, S. H., & Iqbal, J. (2016). Recent advances in the role of organic acids in poultry nutrition. Journal of Applied Animal Research, 44(1), 359-369.

[2]

Salim, H., Huque, K. S., Kamaruddin, K. M., & Beg, A. H. (2018). Global restriction of using antibiotic growth promoters and alternative strategies in poultry production. Science Progress, 101(1), 52-75.

[3]

Bansod, A. P., Kolaskar, A. G., Abhilash, D. J., Pratik, R. J., Sagar, R. S., & Morkhade, S. J. (2020). A review on recent advances in uses of organic acids in poultry production. International Journal of Veterinary Sciences and Animal Husbandry, 5(4), 26-30.

[4]

Nguyen, D. H., Seok, W. J., & Kim, I. H. (2020). Organic acids mixture as a dietary additive for pigs-A review. Animals, 10(6), 952.

[5]

Ebeid, T. A., & Al-Homidan, I. H. (2022). Organic acids and their potential role for modulating the gastrointestinal tract, antioxidative status, immune response, and performance in poultry. World’s Poultry Science Journal, 78(1), 83-101.

[6]

Hajati, H. (2018). Application of organic acids in poultry nutrition. IJAWB, 3(4).

[7]

Khan, R. U., Naz, S., Raziq, F., Qudratullah, Q., Khan, N. A., Laudadio, V., Tufarelli, V., & Ragni, M. (2022). Prospects of organic acids as safe alternative to antibiotics in broiler chickens diet. Environmental Science and Pollution Research, 29(22), 32594-32604.

[8]

Zeeshan, M., Zaneb, H., Masood, S., Ashraf, S., Khan, I., Rehman, H. F. U., Din, S., & Hayat, K. (2022). Morphological modulation of broiler organs in response to an organic acid-phytogen composite in healthy broilers. Agriculture, 12(6), 791.

[9]

Manvatkar, P. N., Kulkarni, R. C., Awandkar, S. P., Chavhan, S. G., Durge, S. M., Avhad, S. R., Channa, G. R., & Kulkarni, M. B. (2022). Performance of broiler chicken on dietary supplementation of protected organic acids blend. British Poultry Science, 63(5), 633-640.

[10]

Vinus, N. S., & Tewatia, B. S. (2017). Organic acids as alternatives to antibiotic growth promoters in poultry. The Pharma Innovation Journal, 6(11), 164-169.

[11]

Dibner, J. J., & Buttin, P. (2002). Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. The Journal of Applied Poultry Research, 11(4), 453-463.

[12]

Scicutella, F., Mannelli, F., Daghio, M., Viti, C., & Buccioni, A. (2021). Polyphenols and organic acids as alternatives to antimicrobials in poultry rearing: A review. Antibiotics, 10(8), 1010.

[13]

Suiryanrayna, M. V. A. N., & Ramana, J. V. (2015). A review of the effects of dietary organic acids fed to swine. Journal of Animal Science and Biotechnology, 6(1), 45.

[14]

Ng, W.-K., & Koh, C.-B. (2016). The utilization and mode of action of organic acids in the feeds of cultured aquatic animals. Reviews in Aquaculture, 9(4), 342-368.

[15]

Pandit, R. J., Hinsu, A. T., Patel, N. V., Koringa, P. G., Jakhesara, S. J., Thakkar, J. R., Shah, T. M., Limon, G., Psifidi, A., Guitian, J., Hume, D. A., Tomley, F. M., Rank, D. N., Raman, M., Tirumurugaan, K. G., Blake, D. P., & Joshi, C. G. (2018). Microbial diversity and community composition of caecal microbiota in commercial and indigenous Indian chickens determined using 16s rDNA amplicon sequencing. Microbiome, 6(1), 115.

[16]

Khan, R. U., Naz, S., Dhama, K., Karthik, K., Tiwari, R., Abdelrahma, M. M., Alhidary, I. A., & Zahoor, A. (2016). Direct-fed microbial: Beneficial applications, modes of action and prospects as a safe tool for enhancing ruminant production and safeguarding health. International Journal of Pharmacology, 12(3), 220-231.

[17]

Nguyen, D. H., Lee, K. Y., Mohammadigheisar, M., & Kim, I. H. (2018). Evaluation of the blend of organic acids and medium-chain fatty acids in matrix coating as antibiotic growth promoter alternative on growth performance, nutrient digestibility, blood profiles, excreta microflora, and carcass quality in broilers. Poultry Science, 97(12), 4351-4358.

[18]

Gao, Y.-Y., Zhang, X.-L., Xu, L.-H., Peng, H., Wang, C.-K., & Bi, Y.-Z. (2019). Encapsulated blends of essential oils and organic acids improved performance, intestinal morphology, cecal microflora, and jejunal enzyme activity of broilers. Czech Journal of Animal Science, 64(5), 189-198.

[19]

Emami, N. K., Daneshmand, A., Naeini, S. Z., Graystone, E. N., & Broom, L. J. (2017). Effects of commercial organic acid blends on male broilers challenged with E. coli K88: Performance, microbiology, intestinal morphology, and immune response. Poultry Science, 96(9), 3254-3263.

[20]

Pham, V. H., Abbas, W., Huang, J., Guo, F., Zhang, K., Kong, L., Zhen, W., Guo, Y., & Wang, Z. (2023). Dietary coated essential oil and organic acid mixture supplementation improves health of broilers infected with avian pathogenic Escherichia coli. Animal Nutrition, 12, 245-262.

[21]

Hu, Z., Liu, L., Guo, F., Huang, J., Qiao, J., Bi, R., Huang, J., Zhang, K., Guo, Y., & Wang, Z. (2023). Dietary supplemental coated essential oils and organic acids mixture improves growth performance and gut health along with reduces Salmonella load of broiler chickens infected with Salmonella Enteritidis. Journal of Animal Science and Biotechnology, 14(1), 95.

[22]

Elnaggar, A., & El-kelawy, M. (2024). Growth performance, nutrient digestibility, and blood parameters of broiler chickens fed a diet supplemented with organic acids. Egyptian Poultry Science Journal, 44(1), 87-110.

[23]

Ebeid, T., Al-Homidan, I., Fathi, M., Al-Jamaan, R., Mostafa, M., Abou-Emera, O., El-Razik, M. A., & Alkhalaf, A. (2021). Impact of probiotics and/or organic acids supplementation on growth performance, microbiota, antioxidative status, and immune response of broilers. Italian Journal of Animal Science, 20(1), 2263-2273.

[24]

Islam, Z., Sultan, A., Khan, S., Khan, K., Jan, A. U., Aziz, T., Alharbi, M., Alshammari, A., & Alasmari, A. F. (2024). Effects of an organic acids blend and coated essential oils on broiler growth performance, blood biochemical profile, gut health, and nutrient digestibility. Italian Journal of Animal Science, 23(1), 152-163.

[25]

Bourassa, D. V., Wilson, K. M., Ritz, C. R., Kiepper, B. K., & Buhr, R. J. (2018). Evaluation of the addition of organic acids in the feed and/or water for broilers and the subsequent recovery of Salmonella Typhimurium from litter and ceca. Poultry Science, 97(1), 64-73.

[26]

Ramlucken, U., Lalloo, R., Roets, Y., Moonsamy, G., van Rensburg, C. J., & Thantsha, M. S. (2020). Advantages of Bacillus-based probiotics in poultry production. Livestock Science, 241, 104215.

[27]

Saleem, K., Saima, Rahman, A., Pasha, T. N., Mahmud, A., & Hayat, Z. (2020). Effects of dietary organic acids on performance, cecal microbiota, and gut morphology in broilers. Tropical Animal Health and Production, 52(6), 3589-3596.

[28]

Nguyen, D. H., & Kim, I. H. (2020). Protected organic acids improved growth performance, nutrient digestibility, and decreased gas emission in broilers. Animals, 10(3), 416.

[29]

Sureshkumar, S., Park, J., & Kim, I. (2021). Effects of the inclusion of dietary organic acid supplementation with anti-coccidium vaccine on growth performance, digestibility, fecal microbial, and chicken fecal noxious gas emissions. Brazilian Journal of Poultry Science, 23(3).

[30]

Fik, M., Hrnčár, C., Hejniš D., Hanusová E., Arpášová H., & Bujko, J. (2021). The effect of citric acid on performance and carcass characteristics of broiler chickens. Scientific Papers: Animal Science and Biotechnologies, 54(1), 187-192.

[31]

Melaku, M., Su, D., Zhao, H., Zhong, R., Ma, T., Chen, L., & Zhang, H. (2024). The new buffer salt-protected sodium butyrate promotes growth performance by improving intestinal histomorphology, barrier function, antioxidative capacity, and microbiota community of broilers. Biology, 13(5), 317.

[32]

Dong, Y., Gao, X., Qiao, C., Han, M., Miao, Z., Liu, C., Yan, L., & Li, J. (2024). Effects of mixed organic acids and essential oils in drinking water on growth performance, intestinal digestive capacity, and immune status in broiler chickens. Animals, 14(15), 2160.

[33]

Ma, J., Wang, J., Mahfuz, S., Long, S., Wu, D., Gao, J., & Piao, X. (2021). Supplementation of mixed organic acids improves growth performance, meat quality, gut morphology and volatile fatty acids of broiler chicken. Animals, 11(11), 3020.

[34]

Zhao, H., Bai, H., Deng, F., Zhong, R., Liu, L., Chen, L., & Zhang, H. (2022). Chemically protected sodium butyrate improves growth performance and early development and function of small intestine in broilers as one effective substitute for antibiotics. Antibiotics, 11(2), 132.

[35]

Rehman, Z. U., Haq, A. U., Akram, N., El-Hack, M. E. A., Saeed, M., Rehman, S. U., Meng, C., Alagawany, M., Sayab, M., Dhama, K., & Ding, C. (2016). Growth performance, intestinal histomorphology, blood hematology and serum metabolites of broilers chickens fed diet supplemented with graded levels of acetic acid. International Journal of Pharmacology, 12(8), 874-883.

[36]

Katoch, S., Sharma, S., Sankhyan, V., Wadhwa, D., Sharma, A., & Kumar, S. (2023). Growth studies in commercial broiler birds offered citric acid in formulated feed with low mineral density. Tropical Animal Health and Production, 55(1), 33.

[37]

Sikandar, A., Zaneb, H., Younus, M., Masood, S., Aslam, A., Khattak, F., Ashraf, S., Yousaf, M. S., & Rehman, H. (2017). Effect of sodium butyrate on performance, immune status, microarchitecture of small intestinal mucosa and lymphoid organs in broiler chickens. Asian-Australasian Journal of Animal Sciences, 30(5), 690-699.

[38]

Khosravinia, H., Nourmohammadi, R., & Afzali, N. (2015). Productive performance, gut morphometry, and nutrient digestibility of broiler chicken in response to low and high dietary levels of citric acid. The Journal of Applied Poultry Research, 24(4), 470-480.

[39]

Archana, K., Zuyie, R., & Vidyarthi, V. K. (2019). Effects of dietary addition of organic acid on performance of broiler chicken. Livestock Research International, 07(02), 71-76.

[40]

Kim, J. W., Kim, J. H., & Kil, D. Y. (2015). Dietary organic acids for broiler chickens: A review. Rev Colomb Cienc Pecu, 28(2), 109-123.

[41]

Yang, X., Xin, H., Yang, C., & Yang, X. (2018). Impact of essential oils and organic acids on the growth performance, digestive functions and immunity of broiler chickens. Animal Nutrition, 4(4), 388-393.

[42]

Nourmohammadi, R., Hosseini, S. M., Farhangfar, H., & Bashtani, M. (2012). Effect of citric acid and microbial phytase enzyme on ileal digestibility of some nutrients in broiler chicks fed corn-soybean meal diets. Italian Journal of Animal Science, 11(1), e7.

[43]

Salgado-Tránsito, L., Del Río-García, J., Arjona-Román, J., Moreno-Martínez, E., & Méndez-Albores, A. (2011). Effect of citric acid supplemented diets on aflatoxin degradation, growth performance and serum parameters in broiler chickens. Archivos de Medicina Veterinaria, 43(3), 215-222.

[44]

Khan, R. U., Chand, N., & Ali, A. (2016). Effect of organic acids on the performance of Japanese quails. Pakistan Journal of Zoology, 48(6), 1799-1803.

[45]

Azad, Md. H., Ali, M. N., Alam, P., Sheikh, N., Ali, H., & Ansari, K. (2019). Evaluation of growth and carcass characteristics of broiler chickens (cobb 500) feed on different level of organic acids inclusion in diet at parwanipur. Nepalese Veterinary Journal, 36, 137-147.

[46]

Nourmohammadi, R., Hosseini, S. M., & Farhangfar, H. (2010). Influence of citric acid and microbial phytase on growth performance and carcass characteristics of broiler chickens. American Journal of Animal and Veterinary Sciences, 5(4), 282-288.

[47]

Pearlin, B. V., Muthuvel, S., Govidasamy, P., Villavan, M., Alagawany, M., Ragab Farag, M., Dhama, K., & Gopi, M. (2020). Role of acidifiers in livestock nutrition and health: A review. Journal of Animal Physiology and Animal Nutrition, 104(2), 558-569.

[48]

Ogwuegbu, M. C., O. Ani, A., E. Oyeagu, C., O. Osita, C., Oyeagu, U., I. Ugwuoke, W., & B. Lewu, F. (2021). Sodium butyrate and rosemary leaf meal inclusion in broiler diet: Effects on gut micro-floral, growth performance, ileum, jejunum and duodenal histological traits. Advances in Animal and Veterinary Sciences, 9(7).

[49]

Sun, H. Y., Zhou, H. B., Liu, Y., Wang, Y., Zhao, C., & Xu, L. M. (2022). Comparison of organic acids supplementation on the growth performance, intestinal characteristics and morphology, and cecal microflora in broilers fed corn-soybean meal diet. Animal Bioscience, 35(11), 1689-1697.

[50]

Liao, X., Shao, Y., Sun, G., Yang, Y., Zhang, L., Guo, Y., Luo, X., & Lu, L. (2020). The relationship among gut microbiota, short-chain fatty acids, and intestinal morphology of growing and healthy broilers. Poultry Science, 99(11), 5883-5895.

[51]

Malematja, E., Manyelo, T. G., Ng’ambi, J. W., Nemauluma, M. F. D., & Kolobe, S. D. F. (2023). Effects of onion extracts (Allium cepa) inclusion in diets on growth performance, carcass characteristics, and bone morphometric of broiler chickens. Animal Bioscience, 36(7), 1075-1082.

[52]

Seifi, S., Sayrafi, R., Khoshbakht, R., & Gilani, A. (2015). Effects of dietary acetic acid on intestinal microbiota, serum components, internal organs and performance of broilers. Global Journal of Animal Scientific Research, 3(2), 536-543.

[53]

Sugiharto, S., Yudiarti, T., Isroli, I., Widiastuti, E., Wahyuni, H. I., Sartono, T. A., Nurwantoro, N., & Al-Baarri, A. N. (2019). Effect of dietary supplementation of formic acid, butyric acid or their combination on carcass and meat characteristics of broiler chickens. Journal of the Indonesian Tropical Animal Agriculture, 44(3), 286.

RIGHTS & PERMISSIONS

2024 The Author(s). Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

570

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/