Hepatic gluconeogenesis and regulatory mechanisms in lactating ruminants: A literature review

Guoyan Wang , Yuanyuan Zhu , Dingping Feng , Junhu Yao , Yangchun Cao , Lu Deng

Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (3) : 230 -239.

PDF
Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (3) : 230 -239. DOI: 10.1002/aro2.80
REVIEW

Hepatic gluconeogenesis and regulatory mechanisms in lactating ruminants: A literature review

Author information +
History +
PDF

Abstract

The conversion of various non-sugar substances, such as propionate and lactate, produced by rumen microbial fermentation into glucose by hepatic gluconeogenesis is the main way to ensure an adequate supply of glucose to the mammary gland of ruminants. Unlike monogastric animals, in ruminants, hepatic gluconeogenesis is a continuous and efficient physiological process. Some signaling pathways, transcription factors, and nutrients affect the expression of genes encoding for gluconeogenic rate-limiting enzymes, which in turn are involved in the regulation of hepatic gluconeogenesis. Although hepatic gluconeogenesis in ruminants has been researched for decades, it still needs to be clarified in depth. Therefore, this review summarizes the process, substrates, and regulatory mechanisms of hepatic gluconeogenesis in ruminants and establishes a theoretical basis for the development of precise nutritional regulation strategies to facilitate high-quality high-efficiency lactation. According to the research so far, phosphoenolpyruvate carboxy kinase, fructose-1,6-bisphosphatase, and glucose-6-phosphatase have been highlighted as the main rate-limiting enzymes that determine the efficiency of gluconeogenesis. With regard to the underlying mechanisms, protein kinase A, protein kinase B, adenosine 5′-monophosphate kinase, and mammalian target of rapamycin pathways have been found to regulate the expression of key gluconeogenic genes through transcription factors. Further, supplementation with propionate, certain amino acids, and micronutrients has shown beneficial effects in terms of improving efficiency of gluconeogenesis. Given the complexity of the metabolic pathways involved in hepatic gluconeogenesis in periparturient ruminants, further research is warranted on the regulatory mechanisms involved and the effects of supplementation with various nutrients on milk yield and animal health.

Keywords

gluconeogenesis pathways / gluconeogenesis substrates / health disturbances / hepatic gluconeogenesis / ruminants

Cite this article

Download citation ▾
Guoyan Wang, Yuanyuan Zhu, Dingping Feng, Junhu Yao, Yangchun Cao, Lu Deng. Hepatic gluconeogenesis and regulatory mechanisms in lactating ruminants: A literature review. Animal Research and One Health, 2025, 3(3): 230-239 DOI:10.1002/aro2.80

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Roden, M., & Shulman, G.I. (2019). The integrative biology of type 2 diabetes. Nature, 576(7785), 51-60. https://doi.org/10.1038/s41586-019-1797-8

[2]

Yu, S., Meng, S., Xiang, M., & Ma, H. (2021). Phosphoenolpyruvate carboxykinase in cell metabolism: Roles and mechanisms beyond gluconeogenesis. Molecular Metabolism, 53, 101257. https://doi.org/10.1016/j.molmet.2021.101257

[3]

Aschenbach, J.R., Kristensen, N.B., Donkin, S.S., Hammon, H.M., & Penner, G.B. (2010). Gluconeogenesis in dairy cows: The secret of making sweet milk from sour dough. IUBMB Life, 62(12), 869-877. https://doi.org/10.1002/iub.400

[4]

Huhtanen, P., Vanhatalo, A., & Varvikko, T. (2002). Effects of abomasal infusions of histidine, glucose, and leucine on milk production and plasma metabolites of dairy cows fed grass silage diets. Journal of Dairy Science, 85(1), 204-216. https://doi.org/10.3168/jds.S0022-0302(02)74069-1

[5]

Hurtaud, C., Lemosquet, S., & Rulquin, H. (2000). Effect of graded duodenal infusions of glucose on yield and composition of milk from dairy cows. 2 Diets based on grass silage. Journal of Dairy Science, 83(12), 2952-2962. https://doi.org/10.3168/jds.S0022-0302(00)75195-2

[6]

Nielsen, M.O., & Jakobsen, K. (1993). Changes in mammary glucose and protein uptake in relation to milk synthesis during lactation in high- and low-yielding goats. Comparative Biochemistry & Physiology, 106(2), 359-365. https://doi.org/10.1016/0300-9629(93)90526-a

[7]

Nielsen, M.O., Madsen, T.G., & Hedeboe, A.M. (2001). Regulation of mammary glucose uptake in goats: Role of mammary gland supply, insulin, IGF-1 and synthetic capacity. Journal of Dairy Research, 68(3), 337-349. https://doi.org/10.1017/s002202990100499x

[8]

Cai, J., Wang, D., Zhao, F.Q., Liang, S., & Liu, J. (2020). AMPK-mTOR pathway is involved in glucose-modulated amino acid sensing and utilization in the mammary glands of lactating goats. Journal of Animal Science and Biotechnology, 11(1), 32. https://doi.org/10.1186/s40104-020-0434-6

[9]

Karcher, E.L., Pickett, M.M., Varga, G.A., & Donkin, S.S. (2007). Effect of dietary carbohydrate and monensin on expression of gluconeogenic enzymes in liver of transition dairy cows. Journal of Animal Science, 85(3), 690-699. https://doi.org/10.2527/jas.2006-369

[10]

Grummer, R.R. (1995). Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. Journal of Animal Science, 73(9), 2820-2833. https://doi.org/10.2527/1995.7392820x

[11]

Bian, X., Jiang, H., Meng, Y., Li, Y.P., Fang, J., & Lu, Z. (2022). Regulation of gene expression by glycolytic and gluconeogenic enzymes. Trends in Cell Biology, 32(9), 786-799. https://doi.org/10.1016/j.tcb.2022.02.003

[12]

Wongkittichote, P., Ah, M.N., & Chapman, K.A. (2017). Propionyl-CoA carboxylase - a review. Molecular Genetics and Metabolism, 122(4), 145-152. https://doi.org/10.1016/j.ymgme.2017.10.002

[13]

Thoma, N.H., & Leadlay, P.F. (1998). Mechanistic and structural studies on methylmalonyl-CoA mutase. Biochemical Society Transactions, 26(3), 293-298. https://doi.org/10.1042/bst0260293

[14]

Hers, H.G., & Hue, L. (1983). Gluconeogenesis and related aspects of glycolysis. Annual Review of Biochemistry, 52(1), 617-653. https://doi.org/10.1146/annurev.bi.52.070183.003153

[15]

Pilkis, S.J., & Claus, T.H. (1991). Hepatic gluconeogenesis/glycolysis: Regulation and structure/function relationships of substrate cycle enzymes. Annual Review of Nutrition, 11(1), 465-515. https://doi.org/10.1146/annurev.nu.11.070191.002341

[16]

Agca, C., Greenfield, R.B., Hartwell, J.R., & Donkin, S.S. (2002). Cloning and characterization of bovine cytosolic and mitochondrial PEPCK during transition to lactation. Physiological Genomics, 11(2), 53-63. https://doi.org/10.1152/physiolgenomics.00108.2001

[17]

Wang, Y., Inoue H., Ravnskjaer K., Viste K., Miller N., Liu Y., Hedrick, S., Vera, L., Montminy, M. (2010). Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity. Proceedings of the National Academy of Sciences, 107(7), 3087-3092. https://doi.org/10.1073/pnas.0914897107

[18]

Perry, R.J., Wang, Y., Cline, G.W., Rabin-Court, A., Song, J.D., Dufour, S., Zhang, X.M., Petersen, K.F., & Shulman, G.I. (2018). Leptin mediates a glucose-fatty acid cycle to maintain glucose homeostasis in starvation. Cell, 172(1-2), 234-248. https://doi.org/10.1016/j.cell.2017.12.001

[19]

Wang, Y., Li, G., Goode, J., Paz, J.C., Ouyang, K., Screaton, R., Fischer, W.H., Chen, J., Tabas, I., & Montminy, M. (2012). Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes. Nature, 485(7396), 128-132. https://doi.org/10.1038/nature10988

[20]

Wang, Y., Vera, L., Fischer, W.H., & Montminy, M. (2009). The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis. Nature, 460(7254), 534-537. https://doi.org/10.1038/nature08111

[21]

Brown, L.D., Kohn, J.R., Rozance, P.J., Hay, W.W., Jr., & Wesolowski, S.R. (2017). Exogenous amino acids suppress glucose oxidation and potentiate hepatic glucose production in late gestation fetal sheep. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 312(5), 654-663. https://doi.org/10.1152/ajpregu.00502.2016

[22]

Zhang, Q., Koser, S.L., & Donkin, S.S. (2016). Propionate induces mRNA expression of gluconeogenic genes in bovine calf hepatocytes. Journal of Dairy Science, 99(5), 3908-3915. https://doi.org/10.3168/jds.2015-10312

[23]

Yang, T., Cheng, Z., Jiang, M., Ma, X., Datsomor, O., Zhao, G., & Zhan, K. (2021). Histidine promotes the glucose synthesis through activation of the gluconeogenic pathway in bovine hepatocytes. Animals, 11(11), 3295. https://doi.org/10.3390/ani11113295

[24]

Larsen, M., & Kristensen, N.B. (2013). Precursors for liver gluconeogenesis in periparturient dairy cows. Animal: an International Journal of Animal Bioscience, 7(10), 1640-1650. https://doi.org/10.1017/S1751731113001171

[25]

Armentano, L.E. (1992). Ruminant hepatic metabolism of volatile fatty acids, lactate and pyruvate. The Journal of Nutrition, 122(3 Suppl), 838-842. https://doi.org/10.1093/jn/122.suppl_3.838

[26]

Huntington, G.B. (1990). Energy metabolism in the digestive tract and liver of cattle: Influence of physiological state and nutrition. Reproduction Nutrition Development, 30(1), 35-47. https://doi.org/10.1051/rnd:19900103

[27]

Prior, R.L., & Scott, R.A. (1977). Ontogeny of gluconeogenesis in the bovine fetus: Influence of maternal dietary energy. Developmental Biology, 58(2), 384-393. https://doi.org/10.1016/0012-1606(77)90099-9

[28]

Gresham, E.L., James, E.J., Raye, J.R., Battaglia, F.C., Makowski, E.L., & Meschia, G. (1972). Production and excretion of urea by the fetal lamb. Pediatrics, 50(3), 372-379. https://doi.org/10.1542/peds.50.3.372

[29]

Wolff, J.E., & Bergman, E.N. (1972). Gluconeogenesis from plasma amino acids in fed sheep. American Journal of Physiology, 223(2), 455-460. https://doi.org/10.1152/ajplegacy.1972.223.2.455

[30]

Prior, R.L. (1980). Glucose and lactate metabolism in vivo in ovine fetus. American Journal of Physiology, 239(3), 208-214. https://doi.org/10.1152/ajpendo.1980.239.3.E208

[31]

Girard, J. (1990). Metabolic adaptations to change of nutrition at birth. Biology of the Neonate, 58(Suppl 1), 3-15. https://doi.org/10.1159/000243294

[32]

Koo, S.H., Flechner, L., Qi, L., Zhang, X., Screaton, R.A., Jeffries, S., Hedrick, S., Xu, W., Boussouar, F., Brindle, P., Takemori, H., & Montminy, M. (2005). The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature, 437(7062), 1109-1111. https://doi.org/10.1038/nature03967

[33]

Altarejos, J.Y., & Montminy, M. (2011). CREB and the CRTC co-activators: Sensors for hormonal and metabolic signals. Nature reviews. Molecular and Cellular Biology, 12(3), 141-151. https://doi.org/10.1038/nrm3072

[34]

Dentin, R., Liu, Y., Koo, S.H., Hedrick, S., Vargas, T., Heredia, J., Yates, J., III, & Montminy, M. (2007). Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature, 449(7160), 366-369. https://doi.org/10.1038/nature06128

[35]

Screaton, R.A., Conkright, M.D., Katoh, Y., Best, J.L., Canettieri, G., Jeffries, S., Guzman, E., Niessen, S., Yates, J.R., III, Takemori, H., Okamoto, M., & Montminy, M. (2004). The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell, 119(1), 61-74. https://doi.org/10.1016/j.cell.2004.09.015

[36]

Oh, G.S., Kim, S.R., Lee, E.S., Yoon, J., Shin, M.K., Ryu, H.K., & Kim, D.S. (2022). Regulation of hepatic gluconeogenesis by nuclear receptor coactivator 6. Molecules and Cells, 45(4), 180-192. https://doi.org/10.14348/molcells.2022.2222

[37]

Accili, D., & Arden, K.C. (2004). FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell, 117(4), 421-426. https://doi.org/10.1016/s0092-8674(04)00452-0

[38]

Matsumoto, M., Pocai, A., Rossetti, L., Depinho, R.A., & Accili, D. (2007). Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metabolism, 6(3), 208-216. https://doi.org/10.1016/j.cmet.2007.08.006

[39]

Nakae, J., Kitamura, T., Ogawa, W., Kasuga, M., & Accili, D. (2001). Insulin regulation of gene expression through the forkhead transcription factor Foxo1 (Fkhr) requires kinases distinct from Akt. Biochemistry, 40(39), 11768-11776. https://doi.org/10.1021/bi015532m

[40]

Haeusler, R.A., Kaestner, K.H., & Accili, D. (2010). FoxOs function synergistically to promote glucose production. Journal of Biological Chemistry, 285(46), 35245-35248. https://doi.org/10.1074/jbc.C110.175851

[41]

Yan, L., Liu, C.H., Xu, L., Qian, Y.Y., Song, P.P., Wei, M., & Liu, B. (2023). Alpha-Asarone modulates kynurenine disposal in muscle and mediates resilience to stress-induced depression via PGC-1α induction. CNS Neuroscience and Therapeutics, 29(3), 941-956. https://doi.org/10.1111/cns.14030

[42]

Ramnanan, C.J., Edgerton, D.S., Rivera, N., Irimia-Dominguez, J., Farmer, B., Neal, D.W., Lautz, M., Donahue, E.P., Meyer, C.M., Roach, P.J., & Cherrington, A.D. (2010). Molecular characterization of insulin-mediated suppression of hepatic glucose production in vivo. Diabetes, 59(6), 1302-1311. https://doi.org/10.2337/db09-1625

[43]

Oh, K.J., Han, H.S., Kim, M.J., & Koo, S.H. (2013). CREB and FoxO1: Two transcription factors for the regulation of hepatic gluconeogenesis. BMB Reports, 46(12), 567-574. https://doi.org/10.5483/bmbrep.2013.46.12.248

[44]

Perry, R.J., Camporez, J. P.G., Kursawe, R., Titchenell, P.M., Zhang, D., Perry, C.J., Jurczak, M., Abudukadier, A., Zhang, X.M., Ruan, H.B., Yang, X., Caprio, S., Kaech, S., Sul, H., Birnbaum, M., Davis, R., Cline, G., Petersen, K., & Shulman, G. (2015). Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell, 160(4), 745-758. https://doi.org/10.1016/j.cell.2015.01.012

[45]

Lu, M., Wan, M., Leavens, K.F., Chu, Q., Monks, B.R., Fernandez, S., Ahima, R.S., Ueki, K., Kahn, C.R., & Birnbaum, M.J. (2012). Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nature Medicine, 18(3), 388-395. https://doi.org/10.1038/nm.2686

[46]

Nakae, J., Kitamura, T., Silver, D.L., & Accili, D. (2001). The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. The Journal of Clinical Investigation, 108(9), 1359-1367. https://doi.org/10.1172/JCI12876

[47]

Ohzono, H., Hu, Y., Nagira, K., Kanaya, H., Okubo, N., Olmer, M., Gotoh, M., Kurakazu, I., Akasaki, Y., Kawata, M., Chen, E., Chu, A.C., Johnson, K.A., & Lotz, M.K. (2023). Targeting FoxO transcription factors with HDAC inhibitors for the treatment of osteoarthritis. Annals of the Rheumatic Diseases, 82(2), 262-271. https://doi.org/10.1136/ard-2021-221269

[48]

Shaw, R.J., Lamia, K.A., Vasquez, D., Koo, S.H., Bardeesy, N., Depinho, R.A., Montminy, M., & Cantley, L.C. (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science, 310(5754), 1642-1646. https://doi.org/10.1126/science.1120781

[49]

Yuan, H.D., & Piao, G.C. (2011). An active part of Artemisia sacrorum Ledeb. suppresses gluconeogenesis through AMPK mediated GSK3beta and CREB phosphorylation in human HepG2 cells. Bioscience Biotechnology & Biochemistry, 75(6), 1079-1084. https://doi.org/10.1271/bbb.100881

[50]

Horike, N., Sakoda, H., Kushiyama, A., Ono, H., Fujishiro, M., Kamata, H., Nishiyama, K., Uchijima, Y., Kurihara, Y., Kurihara, H., & Asano, T. (2008). AMP-activated protein kinase activation increases phosphorylation of glycogen synthase kinase 3beta and thereby reduces cAMP-responsive element transcriptional activity and phosphoenolpyruvate carboxykinase C gene expression in the liver. Journal of Biological Chemistry, 283(49), 33902-33910. https://doi.org/10.1074/jbc.M802537200

[51]

Liu, Y., Dentin, R., Chen, D., Hedrick, S., Ravnskjaer, K., Schenk, S., Milne, J., Meyers, D.J., Cole, P., Iii, J.Y., Olefsky, J., Guarente, L., & Montminy, M. (2008). A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature, 456(7219), 269-273. https://doi.org/10.1038/nature07349

[52]

Montminy, M., Koo, S.H., & Zhang, X. (2004). The CREB family: Key regulators of hepatic metabolism. Annales Endocrinologie (Paris), 65(1), 73-75. https://doi.org/10.1016/s0003-4266(04)95634-x

[53]

Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., Musi, N., Hirshman, M.F., Goodyear, L.J., & Moller, D.E. (2001). Role of AMP-activated protein kinase in mechanism of metformin action. Journal of Clinical Investigation, 108(8), 1167-1174. https://doi.org/10.1172/JCI13505

[54]

Jiang, S.J., Dong, H., Li, J.B., Xu, L.J., Zou, X., Wang, K.F., Lu, F. E., & Yi, P. (2015). Berberine inhibits hepatic gluconeogenesis via the LKB1-AMPK-TORC2 signaling pathway in streptozotocin-induced diabetic rats. World Journal of Gastroenterology, 21(25), 7777-7785. https://doi.org/10.3748/wjg.v21.i25.7777

[55]

Wang, G., Chen, L., Qin, S., Zhang, T., Yao, J., Yi, Y., & Deng, L. (2022). Mechanistic target of rapamycin complex 1: From a nutrient sensor to a key regulator of metabolism and health. Advances in Nutrition, 13(5), 1882-1900. https://doi.org/10.1093/advances/nmac055

[56]

Guo, L., Liang, Z., Zheng, C., Liu, B., Yin, Q., Cao, Y., & Yao, J. (2018). Leucine affects alpha-amylase synthesis through PI3K/Akt-mTOR signaling pathways in pancreatic acinar cells of dairy calves. Journal of Agricultural and Food Chemistry, 66(20), 5149-5156. https://doi.org/10.1021/acs.jafc.8b01111

[57]

Guo, L., Tian, H., Shen, J., Zheng, C., Liu, S., Cao, Y., Cai, C., & Yao, J. (2018). Phenylalanine regulates initiation of digestive enzyme mRNA translation in pancreatic acinar cells and tissue segments in dairy calves. Bioscience Reports, 38(1), BSR20171189. https://doi.org/10.1042/BSR20171189

[58]

Liang, Z., Jin, C., Bai, H., Liang, G., Su, X., Wang, D., & Yao, J. (2023). Low rumen degradable starch promotes the growth performance of goats by increasing protein synthesis in skeletal muscle via the AMPK-mTOR pathway. Animal Nutrition, 13, 1-8. https://doi.org/10.1016/j.aninu.2022.10.006

[59]

Wang, G., Zhang, J., Wu, S., Qin, S., Zheng, Y., Xia, C., Geng, H., Yao, J., & Deng, L. (2022). The mechanistic target of rapamycin complex 1 pathway involved in hepatic gluconeogenesis through peroxisome-proliferator-activated receptor gamma coactivator-1alpha. Animal Nutrition, 11, 121-131. https://doi.org/10.1016/j.aninu.2022.07.010

[60]

Yoon, J.C., Puigserver, P., Chen, G., Donovan, J., Wu, Z., Rhee, J., Adelmant, G., Stafford, J., Kahn, C.R., Granner, D.K., Newgard, C.B., & Spiegelman, B.M. (2001). Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature, 413(6852), 131-138. https://doi.org/10.1038/35093050

[61]

Puigserver, P., Rhee, J., Donovan, J., Walkey, C.J., Yoon, J.C., Oriente, F., Kitamura, Y., Altomonte, J., Dong, H., Accili, D., & Spiegelman, B.M. (2003). Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature, 423(6939), 550-555. https://doi.org/10.1038/nature01667

[62]

Cunningham, J.T., Rodgers, J.T., Arlow, D.H., Vazquez, F., Mootha, V.K., & Puigserver, P. (2007). mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature, 450(7170), 736-740. https://doi.org/10.1038/nature06322

[63]

Masson, M.J., & Phillipson, A.T. (1951). The absorption of acetate, propionate and butyrate from the rumen of sheep. The Journal of Physiology, 113(2-3), 189-206. https://doi.org/10.1113/jphysiol.1951.sp004565

[64]

Oba, M., & Allen, M.S. (2003). Extent of hypophagia caused by propionate infusion is related to plasma glucose concentration in lactating dairy cows. The Journal of Nutrition, 133(4), 1105-1112. https://doi.org/10.1093/jn/133.4.1105

[65]

Judson, G.J., Anderson, E., Luick, J.R., & Leng, R.A. (1968). The contribution of propionate to glucose snythesis in sheep given diets of different grain content. The British Journal of Nutrition, 22(1), 69-75. https://doi.org/10.1079/bjn19680009

[66]

Lomax, M.A., & Baird, G.D. (1983). Blood flow and nutrient exchange across the liver and gut of the dairy cow. Effects of lactation and fasting. The British Journal of Nutrition, 49(3), 481-496. https://doi.org/10.1079/bjn19830057

[67]

Zhang, Q., Koser, S.L., Bequette, B.J., & Donkin, S.S. (2015). Effect of propionate on mRNA expression of key genes for gluconeogenesis in liver of dairy cattle. Journal of Dairy Science, 98(12), 8698-8709. https://doi.org/10.3168/jds.2015-9590

[68]

Williams, E.L., Rodriguez, S.M., Beitz, D.C., & Donkin, S.S. (2006). Effects of short-term glucagon administration on gluconeogenic enzymes in the liver of midlactation dairy cows. Journal of Dairy Science, 89(2), 693-703. https://doi.org/10.3168/jds.S0022-0302(06)72132-4

[69]

Bougouin, A., Ferlay, A., Doreau, M., & Martin, C. (2018). Effects of carbohydrate type or bicarbonate addition to grass silage-based diets on enteric methane emissions and milk fatty acid composition in dairy cows. Journal of Dairy Science, 101(7), 6085-6097. https://doi.org/10.3168/jds.2017-14041

[70]

Joaquín, C.M., Maren, W., Mizanur, R., Edwin, W.K., & Uta, D. (2018). In vitro rumen fermentation, microbial protein synthesis and composition of microbial community of total mixed rations replacing maize silage with red clover silage. Journal of Animal Physiology and Animal Nutrition, 102(6), 1450-1463. https://doi.org/10.1111/jpn.12970

[71]

Markantonatos, X., & Varga, G.A. (2017). Effects of monensin on glucose metabolism in transition dairy cows. Journal of Dairy Science, 100(11), 9020-9035. https://doi.org/10.3168/jds.2016-12007

[72]

McCarthy, M.M., Yasui, T., Ryan, C.M., Pelton, S.H., Mechor, G.D., & Overton, T.R. (2015). Metabolism of early-lactation dairy cows as affected by dietary starch and monensin supplementation. Journal of Dairy Science, 98(5), 3351-3365. https://doi.org/10.3168/jds.2014-8821

[73]

Nielsen, N.I., & Ingvartsen, K.L. (2004). Propylene glycol for dairy cows:A review of the metabolism of propylene glycol and its effects on physiological parameters, feed intake, milk production and risk of ketosis. Animal Feed Science and Technology, 115(3-4), 191-213. https://doi.org/10.1016/j.anifeedsci.2004.03.008

[74]

Caputo Oliveira, R., Erb, S.J., Pralle, R.S., Holdorf, H.T., Seely, C.R., & White, H.M. (2020). Postpartum supplementation with fermented ammoniated condensed whey altered nutrient partitioning to support hepatic metabolism. Journal of Dairy Science, 103(8), 7055-7067. https://doi.org/10.3168/jds.2019-17790

[75]

Wang, X., Zhu, M., Loor, J.J., Jiang, Q., Zhu, Y., Li, W., Du, X., Song, Y., Gao, W., Lei, L., Wang, J., Liu, G., & Li, X. (2022). Propionate alleviates fatty acid-induced mitochondrial dysfunction, oxidative stress, and apoptosis by upregulating PPARG coactivator 1 alpha in hepatocytes. Journal of Dairy Science, 105(5), 4581-4592. https://doi.org/10.3168/jds.2021-21198

[76]

Wang, G.Y., Qin, S.L., Zheng, Y.N., Geng, H.J., Chen, L., Yao, J.H., & Deng, L. (2023). Propionate promotes gluconeogenesis by regulating mechanistic target of rapamycin (mTOR) pathway in calf hepatocytes. Animal Nutrition, 15, 88-98. https://doi.org/10.1016/j.aninu.2023.07.001

[77]

Petersen, M.C., & Shulman, G.I. (2018). Mechanisms of insulin action and insulin resistance. Physiological Reviews, 98(4), 2133-2223. https://doi.org/10.1152/physrev.00063.2017

[78]

Azzout-Marniche, D., Gaudichon, C., Blouet, C., Bos, C., Mathé, V., Huneau, J.F., & Tomé, D. (2007). Liver glyconeogenesis: A pathway to cope with postprandial amino acid excess in high-protein fed rats? American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 292(4), 1400-1407. https://doi.org/10.1152/ajpregu.00566.2006

[79]

Xu, T., Alharthi, A. S.M., Batistel, F., Helmbrecht, A., Parys, C., Trevisi, E., Shen, X., & Loor, J. (2018). Hepatic phosphorylation status of serine/threonine kinase 1, mammalian target of rapamycin signaling proteins, and growth rate in Holstein heifer calves in response to maternal supply of methionine. Journal of Dairy Science, 101(9), 8476-8491. https://doi.org/10.3168/jds.2018-14378

[80]

Zheng, C., Yao, J., Guo, L., Cao, Y., Liang, Z., Yang, X., & Cai, C. (2019). Leucine-induced promotion of post-absorptive EAA utilization and hepatic gluconeogenesis contributes to protein synthesis in skeletal muscle of dairy calves. Journal of Animal Physiology and Animal Nutrition, 103(3), 705-712. https://doi.org/10.1111/jpn.13072

[81]

White, H.M., Carvalho, E.R., Koser, S.L., Schmelz-Roberts, N.S., Pezzanite, L.M., Slabaugh, A.C., Doane, P., & Donkin, S. (2016). Short communication: Regulation of hepatic gluconeogenic enzymes by dietary glycerol in transition dairy cows. Journal of Dairy Science, 99(1), 812-817. https://doi.org/10.3168/jds.2015-9953

[82]

Roichman, A., Elhanati, S., Aon, M.A., Abramovich, I., Di Francesco, A., Shahar, Y., Avivi, M.Y., Shurgi, M., Rubinstein, A., Wiesner, Y., Shuchami, A., Petrover, Z., Lebenthal-Loinger, I., Yaron, O., Lyashkov, A., Ubaida-Mohien, C., Kanfi, Y., Lerrer, B., Fernández-Marcos, P.J., …, Cohen, H.Y. (2021). Restoration of energy homeostasis by SIRT6 extends healthy lifespan. Nature Communications, 12(1), 3208. https://doi.org/10.1038/s41467-021-23545-7

[83]

Perry, R.J., Zhang, X.M., Zhang, D., Kumashiro, N., Camporez, J. P.G., Cline, G.W., Rothman, D.L., & Shulman, G.I. (2014). Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nature Medicine, 20(7), 759-763. https://doi.org/10.1038/nm.3579

[84]

Keech, D.B., & Utter, M.F. (1963). Pyruvate carboxylase. II. Properties. Journal of Biological Chemistry, 238(8), 2609-2614. https://doi.org/10.1016/S0021-9258(18)67874-3

[85]

Weld, K.A., Erb, S.J., & White, H.M. (2019). Short communication: Effect of manipulating fatty acid profile on gluconeogenic gene expression in bovine primary hepatocytes. Journal of Dairy Science, 102(8), 7576-7582. https://doi.org/10.3168/jds.2018-16150

[86]

Waldrop, G.L., Holden, H.M., & St Maurice, M. (2012). The enzymes of biotin dependent CO₂ metabolism: What structures reveal about their reaction mechanisms. Protein Science: a Publication of the Protein Society, 21(11), 1597-1619. https://doi.org/10.1002/pro.2156

[87]

Peters, J.P., & Elliot, J.M. (1983). Effect of vitamin B12 status on performance of the lactating Ewe and gluconeogenesis from propionate. Journal of Dairy Science, 66(9), 1917-1925. https://doi.org/10.3168/jds.S0022-0302(83)82030-X

[88]

Rollin, E., Berghaus, R.D., Rapnicki, P., Godden, S.M., & Overton, M.W. (2010). The effect of injectable butaphosphan and cyanocobalamin on postpartum serum beta-hydroxybutyrate, calcium, and phosphorus concentrations in dairy cattle. Journal of Dairy Science, 93(3), 978-987. https://doi.org/10.3168/jds.2009-2508

[89]

Wang, D.M., Zhang, B.X., Wang, J.K., Liu, H.Y., & Liu, J.X. (2018). Effect of dietary supplements of biotin, intramuscular injections of vitamin B12, or both on postpartum lactation performance in multiparous dairy cows. Journal of Dairy Science, 101(9), 7851-7856. https://doi.org/10.3168/jds.2018-14524

[90]

Chen, B., Wang, C., Wang, Y.M., & Liu, J.X. (2011). Effect of biotin on milk performance of dairy cattle: A meta-analysis. Journal of Dairy Science, 94(7), 3537-3546. https://doi.org/10.3168/jds.2010-3764

[91]

Hausmann, J., Deiner, C., Immig, I., Pieper, R., Starke, A., & Aschenbach, J.R. (2017). Effects of combined supplementation with plant bioactive lipid compounds and biotin on ruminal fermentation, body condition and energy metabolism in transition dairy cows. Animal Feed Science and Technology, 225, 27-37. https://doi.org/10.1016/j.anifeedsci.2017.01.009

[92]

Kinoshita, A., Locher, L., Tienken, R., Meyer, U., Dänicke, S., Rehage, J., & Huber, K. (2016). Associations between forkhead box O1 (FoxO1) expression and indicators of hepatic glucose production in transition dairy cows supplemented with dietary nicotinic acid. PLoS One, 11(1), e0146670. https://doi.org/10.1371/journal.pone.0146670

[93]

Wang, G., Qin, S., Geng, H., Zheng, Y., Li, R., Xia, C., Chen, L., Yao, J., & Deng, L. (2023). Resveratrol promotes gluconeogenesis by inhibiting SESN2-mTORC2-AKT pathway in calf hepatocytes. The Journal of Nutrition, 153(7), 1930-1943. https://doi.org/10.1016/j.tjnut.2023.05.005

[94]

Jiang, L., Sorensen, P., Rontved, C., Vels, L., & Ingvartsen, K.L. (2008). Gene expression profiling of liver from dairy cows treated intra-mammary with lipopolysaccharide. BMC Genomics, 9(1), 443. https://doi.org/10.1186/1471-2164-9-443

[95]

Garcia, M., Bequette, B.J., & Moyes, K.M. (2015). Hepatic metabolic response of Holstein cows in early and mid lactation is altered by nutrient supply and lipopolysaccharide in vitro. Journal of Dairy Science, 98(10), 7102-7114. https://doi.org/10.3168/jds.2014-9034

[96]

Figueiredo, C.C., Balzano-Nogueira, L., Bisinotto, D.Z., Ruiz, A.R., Duarte, G.A., Conesa, A., & Galvão, K. (2023). Differences in uterine and serum metabolome associated with metritis in dairy cows. Journal of Dairy Science, 106(5), 3525-3536. https://doi.org/10.3168/jds.2022-22552

RIGHTS & PERMISSIONS

2024 The Author(s). Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/