Partially substituting alfalfa hay with hemp forage promotes the health and well-being of goats via altering ruminal and plasma metabolites and metabolic pathways

Tao Ran , Guowang Luo , Yipeng Yue , Zhipeng Xu , Zunji Shi , Zhaomin Lei , Wenzhu Yang , Duanqin Wu

Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (1) : 82 -101.

PDF
Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (1) : 82 -101. DOI: 10.1002/aro2.77
ARTICLE

Partially substituting alfalfa hay with hemp forage promotes the health and well-being of goats via altering ruminal and plasma metabolites and metabolic pathways

Author information +
History +
PDF

Abstract

Hemp forage (HF) seems a suitable forage for ruminants for its high nutritional value and rich phytochemicals that exert health and growth-promoting activities. We investigated the effects of hemp-related phytochemicals on rumen and plasma metabolism using metabolome when partially substituting alfalfa hay with HF in goat diets. Numbers of differential metabolites linearly increased with increasing HF substituting rate, approximately 50% of which were phytochemicals. Metabolic pathway enrichment analysis showed that the inclusion of HF greatly promoted steroid hormone biosynthesis, one carbon pool by folate, and retinol metabolism pathways in both rumen and plasma, which are beneficial for promoting animal health and well-being and enhancing the quality of animal products. Some phytochemicals showed inhibitory activities on the growth of certain ruminal bacteria; meanwhile, the detected intermediate metabolites indicated degradation of the phytochemicals by ruminal microbes. These phytochemicals work individually and synergistically to alter ruminal and plasma metabolic pathways, thus exerting benefits in promoting the health and wellbeing of animals.

Keywords

alfalfa hay / goat / hemp forage / metabolome / phytochemical / ruminal microbiota

Cite this article

Download citation ▾
Tao Ran, Guowang Luo, Yipeng Yue, Zhipeng Xu, Zunji Shi, Zhaomin Lei, Wenzhu Yang, Duanqin Wu. Partially substituting alfalfa hay with hemp forage promotes the health and well-being of goats via altering ruminal and plasma metabolites and metabolic pathways. Animal Research and One Health, 2025, 3(1): 82-101 DOI:10.1002/aro2.77

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fordjour, E., Manful, C. F., Sey, A. A., Javed, R., Pham, T. H., Thomas, R., & Cheema, M. (2023). Cannabis: A multifaceted plant with endless potentials. Frontiers in Pharmacology, 14, 1200269.

[2]

Schluttenhofer, C., & Yuan, L. (2017). Challenges towards revitalizing hemp: A multifaceted crop. Trends in Plant Science, 22(11), 917-929.

[3]

Andre, C. M., Hausman, J. F., & Guerriero, G. (2016). Cannabis sativa: The plant of the thousand and one molecules. Frontiers in Plant Science, 7, 19.

[4]

Della Rocca, G., & Di Salvo, A. (2020). Hemp in veterinary medicine: From feed to drug. Frontiers in Veterinary Science, 7, 387.

[5]

Markets, M. (2023). Industrial hemp market by type (hemp seed, hemp seed oil, CBD hemp oil, hemp bast, hemp hurd), source (conventional, organic), application (food & beverages pharmaceuticals, textiles, personal care products), and region - global forecast to 2027. https://www.researchandmarkets.com/reports/4791504/global-industrial-hemp-market-by-type-hemp

[6]

Kleinhenz, M. D., Magnin, G., Ensley, S. M., Griffin, J. J., Goeser, J., Lynch, E., & Coetzee, J. F. (2020). Nutrient concentrations, digestibility, and cannabinoid concentrations of industrial hemp plant components. Applied Animal Science, 36(4), 489-494.

[7]

Semwogerere, F., Katiyatiya, C. L. F., Chikwanha, O. C., Marufu, M. C., & Mapiye, C. (2020). Bioavailability and bioefficacy of hemp by-products in ruminant meat production and preservation: A review. Frontiers in Veterinary Science, 7, 572906.

[8]

Bailoni, L., Bacchin, E., Trocino, A., & Arango, S. (2021). Hemp (Cannabis sativa L.) seed and co-products inclusion in diets for dairy ruminants: A review. Animals, 11(3), 856.

[9]

Klir, Z., Novoselec, J., & Antunovic, Z. (2019). An overview on the use of hemp (Cannabis sativa L.) in animal nutrition. Poljoprivreda, 25(2), 52-61.

[10]

Winders, T. M., Serum, E. M., Smith, D. J., Neville, B. W., Mia, G. K., Amat, S., Dahlen, C. R., & Swanson, K. C. (2022). Influence of hempseed cake inclusion on growth performance, carcass characteristics, feeding behavior, and blood parameters in finishing heifers. Journal of Animal Science, 100(6), skac159.

[11]

Winders, T. M., Neville, B. W., & Swanson, K. C. (2023). Effects of hempseed cake on ruminal fermentation parameters, nutrient digestibility, nutrient flow, and nitrogen balance in finishing steers. Journal of Animal Science, 101, skac291.

[12]

Stevens, S. A., Krebs, G. L., Scrivener, C. J., Noble, G. K., Blake, B. L., Dods, K. C., May, C. D., Tai, Z. X., Clayton, E. H., Lynch, E. E., & Johnson, K. N. (2022). Nutrient digestibility, rumen parameters, and (cannabinoid) residues in sheep fed a pelleted diet containing green hemp (Cannabis sativa L.) biomass. Translational Animal Science, 6(4), txac141.

[13]

Krebs, G. L., De Rosa, D. W., White, D. M., Blake, B. L., Dods, K. C., May, C. D., Tai, Z. X., Clayton, E. H., & Lynch, E. E. (2021). Intake, nutrient digestibility, rumen parameters, growth rate, carcase characteristics and cannabinoid residues of sheep fed pelleted rations containing hemp (Cannabis sativa L.) stubble. Translational Animal Science, 5(4), txab213.

[14]

Ran, T., Xu, Z. P., Liu, D. L., Yang, W. Z., & Wu, D. Q. (2024). Partially substituting alfalfa hay with hemp forage in the diet of goats improved feed efficiency, ruminal fermentation pattern, and microbial profiles. Animal Nutrition, 17, 49-60.

[15]

Parker, N. B., Bionaz, M., Ford, H. R., Irawan, A., Trevisi, E., & Ates, S. (2022). Assessment of spent hemp biomass as a potential ingredient in ruminant diet: Nutritional quality and effect on performance, meat and carcass quality, and hematological parameters in finishing lambs. Journal of Animal Science, 100(10), skac263.

[16]

EFSA. (2011). Scientific opinion on the safety of hemp (Cannabis genus) for use as animal feed. Panel on additives and products or substances used in animal feed (FEEDAP). EFSA Journal, 9(3).

[17]

Radwan, M. M., Chandra, S., Gul, S., & Elsohly, M. A. (2021). Cannabinoids, phenolics, terpenes, and alkaloids of cannabis. Molecules, 26(9), 2774.

[18]

Baron, E. P. (2018). Medicinal properties of cannabinoids, terpenes, and flavonoids in cannabis, and benefits in migraine, headache, and pain: An update on current evidence and cannabis science. Headache, 58(7), 1139-1186.

[19]

Bautista, J. L., Yu, S., & Tian, L. (2021). Flavonoids in Cannabis sativa: Biosynthesis, bioactivities, and biotechnology. ACS Omega, 6(8), 5119-5123.

[20]

Semwogerere, F., Chikwanha, O. C., Katiyatiya, C. L. F., Marufu, M. C., & Mapiye, C. (2023). Bioavailability of bioactive phytochemicals in selected tissues and excreta from goats fed hempseed cake (Cannabis sativa L.) finisher diets. Tropical Animal Health and Production, 55(4), 262.

[21]

Jamwal, R., Topletz, A. R., Ramratnam, B., & Akhlaghi, F. (2017). Ultra-high performance liquid chromatography tandem mass-spectrometry for simple and simultaneous quantification of cannabinoids. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences, 1048, 10-18.

[22]

Zhang, T., Mu, Y., Zhang, R., Xue, Y., Guo, C., Qi, W., Zhang, J., & Mao, S. (2022). Responsive changes of rumen microbiome and metabolome in dairy cows with different susceptibility to subacute ruminal acidosis. Animal Nutrition, 8(1), 331-340.

[23]

Artegoitia, V. M., Foote, A. P., Lewis, R. M., & Freetly, H. C. (2017). Rumen fluid metabolomics analysis associated with feed efficiency on crossbred steers. Scientific Reports, 7(1), 2864.

[24]

Yu, G., Xu, C. F., Zhang, D. N., Ju, F., & Ni, Y. (2022). MetOrigin: Discriminating the origins of microbial metabolites for integrative analysis of the gut microbiome and metabolome. iMeta, 1(1), e10.

[25]

Wang, Y., Yu, Q., Wang, X., Song, J., Lambo, M. T., Huang, J., He, P., Li, Y., & Zhang, Y. (2023). Replacing alfalfa hay with industrial hemp ethanol extraction byproduct and Chinese wildrye hay: Effects on lactation performance, plasma metabolites, and bacterial communities in holstein cows. Frontiers in Veterinary Science, 10, 1061219.

[26]

Quinones-Munoz, T. A., Villanueva-Rodriguez, S. J., & Torruco-Uco, J. G. (2022). Nutraceutical properties of Medicago sativa L., Agave spp., Zea mays L. and Avena sativa L.: A review of metabolites and mechanisms. Metabolites, 12(9), 806.

[27]

Dörfer, M., Gressler, M., & Hoffmeister, D. (2019). Diversity and bioactivity of Armillaria sesquiterpene aryl ester natural products. Mycological Progress, 18(8), 1027-1037.

[28]

Cobellis, G., Trabalza-Marinucci, M., & Yu, Z. T. (2016). Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Science of the Total Environment, 545-546, 556-568.

[29]

Calsamiglia, S., Busquet, M., Cardozo, P. W., Castillejos, L., & Ferret, A. (2007). Invited review: Essential oils as modifiers of rumen microbial fermentation. Journal of Dairy Science, 90(6), 2580-2595.

[30]

Wallace, R. J., Mcewan, N. R., Mcintosh, F. M., Teferedegne, B., & Newbold, C. J. (2002). Natural products as manipulators of rumen fermentation. Asian-Australasian Journal of Animal Science, 15(10), 1458-1468.

[31]

Mcintosh, F. M., Williams, P., Losa, R., Wallace, R. J., Beever, D. A., & Newbold, C. J. (2003). Effects of essential oils on ruminal microorganisms and their protein metabolism. Applied and Environmental Microbiology, 69(8), 5011-5014.

[32]

Patra, A. K., & Yu, Z. T. (2015). Essential oils affect populations of some rumen bacteria as revealed by microarray (RumenBactArray) analysis. Frontiers in Microbiology, 6, 297.

[33]

Nissen, L., Zatta, A., Stefanini, I., Grandi, S., Sgorbati, B., Biavati, B., & Monti, A. (2010). Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.). Fitoterapia, 81(5), 413-419.

[34]

Oh, J., Wall, E. H., Bravo, D. M., & Hristov, A. N. (2017). Host-mediated effects of phytonutrients in ruminants: A review. Journal of Dairy Science, 100(7), 5974-5983.

[35]

Ibrahim, E. A., Wang, M., Radwan, M. M., Wanas, A. S., Majumdar, C. G., Avula, B., Wang, Y. H., Khan, I. A., Chandra, S., Lata, H., Hadad, G. M., Abde Salaml, R. A., Ibrahim, A. K., Ahmed, S. A., & Elsohly, M. A. (2019). Analysis of terpenes in Cannabis sativa L. Using GC/MS: Method development, validation, and application. Planta Medica, 85(5), 431-438.

[36]

Palmieri, S., Pellegrini, M., Ricci, A., Compagnone, D., & Lo Sterzo, C. (2020). Chemical composition and antioxidant activity of thyme, hemp, and coriander extracts: A comparison study of maceration, Soxhlet, UAE and RSLDE techniques. Foods, 9(9), 1221.

[37]

Noppawan, P., Bainier, C., Lanot, A., Mcqueen-Mason, S., Supanchaiyamat, N., Attard, T. M., & Hunt, A. J. (2022). Effect of harvest time on the compositional changes in essential oils, cannabinoids, and waxes of hemp (Cannabis sativa L.). Royal Society Open Science, 9(6), 211699.

[38]

Olagaray, K. E., & Bradford, B. J. (2019). Plant flavonoids to improve productivity of ruminants - a review. Animal Feed Science and Technology, 251, 21-36.

[39]

Blaut, M., & Clavel, T. (2007). Metabolic diversity of the intestinal microbiota: Implications for health and disease. Journal of Nutrition, 137(3 Suppl 2), 751S-755S.

[40]

Schoefer, L., Mohan, R., Schwiertz, A., Braune, A., & Blaut, M. (2003). Anaerobic degradation of flavonoids by Clostridium orbiscindens. Applied and Environmental Microbiology, 69(10), 5849-5854.

[41]

Vollmer, M., Esders, S., Farquharson, F. M., Neugart, S., Duncan, S. H., Schreiner, M., Louis, P., Maul, R., & Rohn, S. (2018). Mutual interaction of phenolic compounds and microbiota: Metabolism of complex phenolic apigenin-C- and kaempferol-O-derivatives by human fecal samples. Journal of Agricultural and Food Chemistry, 66(2), 485-497.

[42]

Berger, L. M., Blank, R., Zorn, F., Wein, S., Metges, C. C., & Wolffram, S. (2015). Ruminal degradation of quercetin and its influence on fermentation in ruminants. Journal of Dairy Science, 98(8), 5688-5698.

[43]

Beck, M. R., & Gregorini, P. (2020). How dietary diversity enhances hedonic and eudaimonic well-being in grazing ruminants. Frontiers in Veterinary Science, 7, 191.

[44]

Masella, R., Di Benedetto, R., Varì R., Filesi, C., & Giovannini, C. (2005). Novel mechanisms of natural antioxidant compounds in biological systems: Involvement of glutathione and glutathione-related enzymes. Journal of Nutritional Biochemistry, 16(10), 577-586.

[45]

Zhan, J., Liu, M., Su, X., Zhan, K., Zhang, C., & Zhao, G. (2017). Effects of alfalfa flavonoids on the production performance, immune system, and ruminal fermentation of dairy cows. Asian-Australasian Journal of Animal Science, 30(10), 1416-1424.

[46]

Li, Z. X., Zhou, J. F., Ji, L. R., Liang, Y. Y., & Xie, S. Q. (2023). Recent advances in the pharmacological actions of apigenin, its complexes, and its derivatives. Food Reviews International, 39(9), 6568-6601.

[47]

Orzuna-Orzuna, J. F., Dorantes-Iturbide, G., Lara-Bueno, A., Chay-Canul, A. J., Miranda-Romero, L. A., & Mendoza-Martinez, G. D. (2023). Meta-analysis of flavonoids use into beef and dairy cattle diet: Performance, antioxidant status, ruminal fermentation, meat quality, and milk composition. Frontiers in Veterinary Science, 10, 1134925.

[48]

Zhao, J. S., Yao, Y. F., Li, D. Y., Zhu, W., Xiao, H. T., Xie, M., Xiong, Y., Wu, J. Y., Ni, Q. Y., Zhang, M. W., & Xu, H. L. (2023). Metagenome and metabolome insights into the energy compensation and exogenous toxin degradation of gut microbiota in high-altitude rhesus macaques (Macaca mulatta). NPJ Biofilms and Microbiomes, 9(1), 20.

[49]

Tarkowská D. (2019). Plants are capable of synthesizing animal steroid hormones. Molecules, 24(14), 2585.

[50]

Farinon, B., Molinari, R., Costantini, L., & Merendino, N. (2020). The seed of industrial hemp (Cannabis sativa L.): Nutritional quality and potential functionality for human health and nutrition. Nutrients, 12(7), 1935.

[51]

Salehi, B., Quispe, C., Sharifi-Rad, J., Cruz-Martins, N., Nigam, M., Mishra, A. P., Konovalov, D. A., Orobinskaya, V., Abu-Reidah, I. M., Zam, W., Sharopov, F., Venneri, T., Capasso, R., Kukula-Koch, W., Wawruszak, A., & Koch, W. (2020). Phytosterols: From preclinical evidence to potential clinical applications. Frontiers in Pharmacology, 11, 599959.

[52]

Kopylov, A. T., Malsagova, K. A., Stepanov, A. A., & Kaysheva, A. L. (2021). Diversity of plant sterols metabolism: The impact on human health, sport, and accumulation of contaminating sterols. Nutrients, 13(5), 1623.

[53]

Shetty, S., & Varshney, U. (2021). Regulation of translation by one-carbon metabolism in bacteria and eukaryotic organelles. Journal of Biological Chemistry, 296, 100088.

[54]

Ragaller, V., Hüther, L., & Lebzien, P. (2009). Folic acid in ruminant nutrition: A review. British Journal of Nutrition, 101(2), 153-164.

[55]

Bailey, L. B., & Gregory, J. F. 3rd. (1999). Folate metabolism and requirements. Journal of Nutrition, 129(4), 779-782.

[56]

Wang, C., Liu, C., Zhang, G. W., Du, H. S., Wu, Z. Z., Liu, Q., Guo, G., Huo, W. J., Zhang, J., Pei, C. X., Chen, L., & Zhang, S. L. (2020). Effects of rumen-protected folic acid and betaine supplementation on growth performance, nutrient digestion, rumen fermentation, and blood metabolites in Angus bulls. British Journal of Nutrition, 123(10), 1109-1116.

[57]

Wang, C., Wu, X. X., Liu, Q., Guo, G., Huo, W. J., Zhang, Y. L., Pei, C. X., Zhang, S. L., & Wang, H. (2019). Effects of folic acid on growth performance, ruminal fermentation, nutrient digestibility and urinary excretion of purine derivatives in post-weaned dairy calves. Archives of Animal Nutrition, 73(1), 18-29.

[58]

Blomhoff, R., & Blomhoff, H. K. (2006). Overview of retinoid metabolism and function. Journal of Neurobiology, 66(7), 606-630.

[59]

Nozière, P., Graulet, B., Lucas, A., Martin, B., Grolier, P., & Doreau, M. (2006). Carotenoids for ruminants: From forages to dairy products. Animal Feed Science and Technology, 131(3-4), 418-450.

[60]

Bos, A., van Egmond Egmond, M. M., & Mebius, R. (2022). The role of retinoic acid in the production of immunoglobulin A. Mucosal Immunology, 15(4), 562-572.

RIGHTS & PERMISSIONS

2024 The Author(s). Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

185

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/