CircDYRK1A regulates bovine myoblasts development by binding miR21-5p to affect KLF5 gene expression

Peng Yang , Xinmiao Li , Lei Du , Shijie Lyu , Zijing Zhang , Fengpeng Lin , Xinglei Qi , Xian Liu , Eryao Wang , Chuzhao Lei , Yongzhen Huang

Animal Research and One Health ›› 2024, Vol. 2 ›› Issue (4) : 431 -445.

PDF
Animal Research and One Health ›› 2024, Vol. 2 ›› Issue (4) : 431 -445. DOI: 10.1002/aro2.76
ARTICLE

CircDYRK1A regulates bovine myoblasts development by binding miR21-5p to affect KLF5 gene expression

Author information +
History +
PDF

Abstract

Circular RNA (circRNA), a stable ring-shaped RNA molecule found in eukaryotic cells, plays significant roles in biological regulation, particularly by interfering with transcription factor binding or enhancing gene expression. Using transcriptomic sequencing, we identified differentially expressed circRNAs in bovine muscle at various time points. Specifically, circDYRK1A was discovered and shown to enhance differentiation while suppressing proliferation of adult myoblasts. Rescue experiments further demonstrated that circDYRK1A regulates the KLF5 gene expression by interacting with miR21-5p, thus exerting its influence at the transcriptional level. This study marks the first identification of circDYRK1A in cattle and elucidates its role in bovine myoblast development through the circDYRK1A-miR21-5p-KLF5 regulatory axis. These findings contribute novel insights into molecular breeding of cattle and advance fundamental research on beef cattle breeding and muscle development.

Keywords

bovine / circRNA / KLF5 / miR21-5p / skeletal muscle

Cite this article

Download citation ▾
Peng Yang, Xinmiao Li, Lei Du, Shijie Lyu, Zijing Zhang, Fengpeng Lin, Xinglei Qi, Xian Liu, Eryao Wang, Chuzhao Lei, Yongzhen Huang. CircDYRK1A regulates bovine myoblasts development by binding miR21-5p to affect KLF5 gene expression. Animal Research and One Health, 2024, 2(4): 431-445 DOI:10.1002/aro2.76

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Endo, T. (2015). Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion. Bone, 80, 2–13.

[2]

Kollias, H. D., & McDermott, J. C. (2008). Transforming growth factor-beta and myostatin signaling in skeletal muscle. Journal of Applied Physiology (1985), 104(3), 579–587.

[3]

Philippou, A., Maridaki, M., Halapas, A., & Koutsilieris, M. (2007). The role of the insulin-like growth factor 1 (IGF-1) in skeletal muscle physiology. Vivo, 21(1), 45–54.

[4]

Benoit, B., Meugnier, E., Castelli, M., Chanon, S., Vieille-Marchiset, A., Durand, C., Bendridi, N., Pesenti, S., Monternier, P. A., Durieux, A. C., Freyssenet, D., Rieusset, J., Lefai, E., Vidal, H., & Ruzzin, J. (2017). Fibroblast growth factor 19 regulates skeletal muscle mass and ameliorates muscle wasting in mice. Nature Medicine, 23(8), 990–996.

[5]

Munsterberg, A. E., Kitajewski, J., Bumcrot, D. A., McMahon, A. P., & Lassar, A. B. (1995). Combinatorial signaling by Sonic hedgehog and Wnt family members induces myogenic bHLH gene expression in the somite. Genes & Development, 9(23), 2911–2922.

[6]

Beermann, D. H., Cassens, R. G., & Hausman, G. J. (1978). A second look at fiber type differentiation in porcine skeletal muscle. Journal of Animal Science, 46(1), 125–132.

[7]

Kuang, S., Kuroda, K., Le Grand, F., & Rudnicki, M. A. (2007). Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell, 129(5), 999–1010.

[8]

Guo, Z., Maki, M., Ding, R., Yang, Y., Zhang, B., & Xiong, L. (2014). Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues. Scientific Reports, 4(1), 5150.

[9]

Yang, Y., Fan, X., Yan, J., Chen, M., Zhu, M., Tang, Y., Liu, S., & Tang, Z. (2021). A comprehensive epigenome atlas reveals DNA methylation regulating skeletal muscle development. Nucleic Acids Research, 49(3), 1313–1329.

[10]

Chakraborty, R., Ostriker, A. C., Xie, Y., Dave, J. M., Gamez-Mendez, A., Chatterjee, P., Abu, Y., Valentine, J., Lezon-Geyda, K., Greif, D. M., Schulz, V. P., Gallagher, P. G., Sessa, W. C., Hwa, J., & Martin, K. A. (2022). Histone acetyltransferases p300 and CBP coordinate distinct chromatin remodeling programs in vascular smooth muscle plasticity. Circulation, 145(23), 1720–1737.

[11]

Trewin, A. J., Silver, J., Dillon, H. T., Della Gatta, P. A., Parker, L., Hiam, D. S., Lee, Y. P., Richardson, M., Wadley, G. D., & Lamon, S. (2022). Long non-coding RNA Tug1 modulates mitochondrial and myogenic responses to exercise in skeletal muscle. BMC Biology, 20(1), 164. Published 2022 Jul 18.

[12]

Xue, C., Li, G., Zheng, Q., Gu, X., Bao, Z., Lu, J., & Li, L. (2022). The functional roles of the circRNA/Wnt axis in cancer. Molecular Cancer, 21(1), 108.

[13]

Nigro, J. M., Cho, K. R., Fearon, E. R., Kern, S. E., Ruppert, J. M., Oliner, J. D., Kinzler, K. W., & Vogelstein, B. (1991). Scrambled exons. Cell, 64(3), 607–613.

[14]

Qi, A., Ru, W., Yang, H., Yang, Y., Tang, J., Yang, S., Lan, X., Lei, C., Sun, X., & Chen, H. (2022). Circular RNA ACTA1 acts as a sponge for miR-199a-5p and miR-433 to regulate bovine myoblast development through the MAP3K11/MAP2K7/JNK pathway. Journal of Agricultural and Food Chemistry, 70(10), 3357–3373.

[15]

Ru, W., Qi, A., Shen, X., Yue, B., Zhang, X., Wang, J., Cao, H., & Chen, H. (2021). The circular RNA circCPE regulates myoblast development by sponging miR-138. Journal of Animal Science and Biotechnology, 12(1), 102.

[16]

Fukada, M., Matsuhashi, N., Takahashi, T., Sugito, N., Heishima, K., Yoshida, K., & Akao, Y. (2021). Postoperative changes in plasma miR21-5p as a novel biomarker for colorectal cancer recurrence: A prospective study. Cancer Science, 112(10), 4270–4280.

[17]

Zhang, A., Ma, S., Yuan, L., Wu, S., Liu, S., Wei, X., Chen, L., Ma, C., & Zhao, H. (2020). Knockout of miR-21-5p alleviates cartilage matrix degradation by targeting Gdf5 in temporomandibular joint osteoarthritis. Bone & Joint Research, 9(10), 689–700.

[18]

Taylor, M. V., & Hughes, S. M. (2017). Mef2 and the skeletal muscle differentiation program. Seminars in Cell & Developmental Biology, 72, 33–44.

[19]

Romano, G., Saviana, M., Le, P., Li, H., Micalo, L., Nigita, G., Acunzo, M., & Nana-Sinkam, P. (2020). Non-Coding RNA editing in cancer pathogenesis. Cancers, 12(7), 1845.

[20]

Liu, Y., Liu, X., Lin, C., Jia, X., Zhu, H., Song, J., & Zhang, Y. (2021). Noncoding RNAs regulate alternative splicing in Cancer. Journal of Experimental & Clinical Cancer Research, 40(1), 11.

[21]

Huang, G., Liang, M., Liu, H., Huang, J., Li, P., Wang, C., Zhang, Y., Lin, Y., & Jiang, X. (2020). CircRNA hsa_circRNA_104348 promotes hepatocellular carcinoma progression through modulating miR-187-3p/RTKN2 axis and activating Wnt/beta-catenin pathway. Cell Death & Disease, 11(12), 1065.

[22]

Li, H., Xu, J. D., Fang, X. H., Zhu, J. N., Yang, J., Pan, R., Yuan, S. J., Zeng, N., Yang, Z. Z., Yang, H., Wang, X. P., Duan, J. Z., Wang, S., Luo, J. F., Wu, S. L., & Shan, Z. X. (2020). Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4. Cardiovascular Research, 116(7), 1323–1334.

[23]

Liu, H., Xue, Q., Cai, H., Jiang, X., Cao, G., Chen, T., Chen, Y., & Wang, D. (2022). RUNX3-mediated circDYRK1A inhibits glutamine metabolism in gastric cancer by up-regulating microRNA-889-3p-dependent FBXO4. Journal of Translational Medicine, 20(1), 120.

[24]

Smillie, C. L., Sirey, T., & Ponting, C. P. (2018). Complexities of post-transcriptional regulation and the modeling of ceRNA crosstalk. Critical Reviews in Biochemistry and Molecular Biology, 53(3), 231–245.

[25]

Hayashi, S., Manabe, I., Suzuki, Y., Relaix, F., & Oishi, Y. (2016). Klf5 regulates muscle differentiation by directly targeting muscle-specific genes in cooperation with MyoD in mice. Elife, 5, e17462.

RIGHTS & PERMISSIONS

2024 The Author(s). Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

191

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/