Temperature and humidity as drivers for the transmission of zoonotic diseases

Li Zhang , Chenrui Lv , Wenqiang Guo , Zhenzhuo Li

Animal Research and One Health ›› 2024, Vol. 2 ›› Issue (3) : 323 -336.

PDF
Animal Research and One Health ›› 2024, Vol. 2 ›› Issue (3) : 323 -336. DOI: 10.1002/aro2.75
REVIEW

Temperature and humidity as drivers for the transmission of zoonotic diseases

Author information +
History +
PDF

Abstract

Zoonotic diseases remain a persistent threat to global public health. Many major zoonotic pathogens exhibit seasonal patterns associated with climatic variations. Quantifying the impacts of environmental variables such as temperature and humidity on disease transmission dynamics is critical for improving prediction and control measures. This review synthesizes current evidence on the relationships between temperature and humidity and major zoonotic diseases, including malaria, dengue, rabies, anisakiasis, and influenza. Overall, this review highlighted some overarching themes across the different zoonotic diseases examined. Higher temperatures within suitable ranges were generally associated with increased transmission risks, while excessively high or low temperatures had adverse effects. Humidity exhibited complex nonlinear relationships, facilitating transmission in certain temperature zones but inhibiting it in others. Heavy rainfall and high humidity were linked to vector-borne disease outbreaks such as malaria by enabling vector breeding. However, reduced incidence of some diseases like dengue fever was observed with high rainfall. To address existing knowledge gaps, future research efforts should prioritize several key areas: enhancing data quality through robust surveillance and the integration of high-resolution microclimate data; standardizing analytical frameworks and leveraging advanced methodologies such as machine learning; conducting mechanistic studies to elucidate pathogen, vector, and host responses to climatic stimuli; adopting interdisciplinary approaches to account for interacting drivers; and projecting disease impacts under various climate change scenarios to inform adaptation strategies. Investing in these research priorities can propel the development of evidence-based climate-aware disease prediction and control measures, ultimately safeguarding public health more effectively.

Keywords

climate change / epidemiology / humidity / temperature / zoonotic diseases

Cite this article

Download citation ▾
Li Zhang, Chenrui Lv, Wenqiang Guo, Zhenzhuo Li. Temperature and humidity as drivers for the transmission of zoonotic diseases. Animal Research and One Health, 2024, 2(3): 323-336 DOI:10.1002/aro2.75

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anas, M., Sami, M. A., Siddiqui, Z., Khatoon, K., Zeyad, M. T., & Malik, A. (2021). Impact of climate change on the incidence and transfer of food- and water-borne diseases. In Microbiomes and the global climate change (pp. 123–144).

[2]

Kuhn, K. G., Nygård, K. M., Guzman-Herrador, B., Sunde, L. S., Rimhanen-Finne, R., Trönnberg, L., Jepsen, M. R., Ruuhela, R., Wong, W. K., & Ethelberg, S. (2020). Campylobacter infections expected to increase due to climate change in Northern Europe. Scientific Reports, 10(1), 13874.

[3]

European Food Safety, A., Maggiore, A., Afonso, A., Barrucci, F., & Sanctis, G. D. (2020). Climate change as a driver of emerging risks for food and feed safety, plant, animal health and nutritional quality. EFSA Supporting Publications, 17(6), 1881E.

[4]

Swei, A., Couper, L. I., Coffey, L. L., Kapan, D., & Bennett, S. (2019). Patterns, drivers, and challenges of vector-borne disease emergence. Vector Borne and Zoonotic Diseases, 20(3), 159–170.

[5]

Rahman, M. T., Sobur, M. A., Islam, M. S., Ievy, S., Hossain, M. J., El Zowalaty, M. E., Rahman, A. T., & Ashour, H. M. (2020). Zoonotic diseases: Etiology, impact, and control. Microorganisms, 8(9), 1405.

[6]

Kessler, S., Harder, T. C., Schwemmle, M., & Ciminski, K. (2021). Influenza A viruses and zoonotic events—Are we creating our own reservoirs? Viruses, 13(11), 2250.

[7]

Metcalf, C. J. E., Walter, K. S., Wesolowski, A., Buckee, C. O., Shevliakova, E., Tatem, A. J., Boos, W. R., Weinberger, D. M., & Pitzer, V. E. (2017). Identifying climate drivers of infectious disease dynamics: Recent advances and challenges ahead. Proceedings of the Royal Society B: Biological Sciences, 284(1860), 20170901.

[8]

Gandon, S., Day, T., Metcalf, C. J. E., & Grenfell, B. T. (2016). Forecasting epidemiological and evolutionary dynamics of infectious diseases. Trends in Ecology and Evolution, 31(10), 776–788.

[9]

Campbell, K. M., Haldeman, K., Lehnig, C., Munayco, C. V., Halsey, E. S., Laguna-Torres, V. A., Yagui, M., Morrison, A. C., Lin, C.-D., & Scott, T. W. (2015). Weather regulates location, timing, and intensity of dengue virus transmission between humans and mosquitoes. PLoS Neglected Tropical Diseases, 9(7), e0003957.

[10]

Imai, C., & Hashizume, M. (2015). A systematic review of methodology: Time series regression analysis for environmental factors and infectious diseases. Tropical Medicine and Health, 43, 1–9.

[11]

Li, R., Xu, L., Bjørnstad, O. N., Liu, K., Song, T., Chen, A., Xu, B., Liu, Q., & Stenseth, N. C. (2019). Climate-driven variation in mosquito density predicts the spatiotemporal dynamics of dengue. Proceedings of the National Academy of Sciences, 116(9), 3624–3629.

[12]

El-Sayed, A., & Kamel, M. (2020). Climatic changes and their role in emergence and re-emergence of diseases. Environmental Science and Pollution Research, 27(18), 22336–22352.

[13]

Caminade, C., McIntyre, K. M., & Jones, A. E. (2019). Impact of recent and future climate change on vector-borne diseases. Annals of the New York Academy of Sciences, 1436(1), 157–173.

[14]

Bernardo-Cravo, A. P., Schmeller, D. S., Chatzinotas, A., Vredenburg, V. T., & Loyau, A. (2020). Environmental factors and host microbiomes shape host–pathogen dynamics. Trends in Parasitology, 36(7), 616–633.

[15]

Yadav, N., & Upadhyay, R. K. (2023). Global effect of climate change on seasonal cycles, vector population and rising challenges of communicable diseases: A review. Journal of Atmospheric Science Research, 6(1), 21–59.

[16]

Islam, W., Noman, A., Naveed, H., Alamri, S. A., Hashem, M., Huang, Z., & Chen, H. Y. H. (2020). Plant-insect vector-virus interactions under environmental change. Science of the Total Environment, 701, 135044.

[17]

Chowdhury, F. R., Ibrahim, Q. S. U., Bari, M. S., Alam, M. M. J., Dunachie, S. J., Rodriguez-Morales, A. J., & Patwary, M. I. (2018). The association between temperature, rainfall and humidity with common climate-sensitive infectious diseases in Bangladesh. PLoS One, 13(6), e0199579.

[18]

Mordecai, E. A., Cohen, J. M., Evans, M. V., Gudapati, P., Johnson, L. R., Lippi, C. A., Miazgowicz, K., Murdock, C. C., Rohr, J. R., Ryan, S. J., Savage, V., Shocket, M. S., Stewart Ibarra, A., Thomas, M. B., & Weikel, D. P. (2017). Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Neglected Tropical Diseases, 11(4), e0005568.

[19]

Anstey, N. M., & Grigg, M. J. (2019). Zoonotic malaria: The better you look, the more you find. The Journal of Infectious Diseases, 219(5), 679–681.

[20]

Halliday, J. E. B., Carugati, M., Snavely, M. E., Allan, K. J., Beamesderfer, J., Ladbury, G. A. F., Hoyle, D. V., Holland, P., Crump, J. A., Cleaveland, S., & Rubach, M. P. (2020). Zoonotic causes of febrile illness in malaria endemic countries: A systematic review. The Lancet Infectious Diseases, 20(2), e27–e37.

[21]

Garrido-Cardenas, J. A., Cebrián-Carmona, J., González-Cerón, L., Manzano-Agugliaro, F., & Mesa-Valle, C. (2019). Analysis of global research on malaria and Plasmodium vivax. International Journal of Environmental Research and Public Health, 16(11), 1928.

[22]

Hundessa, S., Williams, G., Li, S., Liu, D. L., Cao, W., Ren, H., Guo, J., Gasparrini, A., Ebi, K., Zhang, W., & Guo, Y. (2018). Projecting potential spatial and temporal changes in the distribution of Plasmodium vivax and Plasmodium falciparum malaria in China with climate change. Science of the Total Environment, 627, 1285–1293.

[23]

Dabaro, D., Birhanu, Z., Negash, A., Hawaria, D., & Yewhalaw, D. (2021). Effects of rainfall, temperature and topography on malaria incidence in elimination targeted district of Ethiopia. Malaria Journal, 20(1), 104.

[24]

Lyon, B., Dinku, T., Raman, A., & Thomson, M. C. (2017). Temperature suitability for malaria climbing the Ethiopian Highlands. Environmental Research Letters, 12(6), 064015.

[25]

Ssempiira, J., Kissa, J., Nambuusi, B., Mukooyo, E., Opigo, J., Makumbi, F., Kasasa, S., & Vounatsou, P. (2018). Interactions between climatic changes and intervention effects on malaria spatio-temporal dynamics in Uganda. Parasite Epidemiology and Control, 3, e00070.

[26]

Julius Nyerere, O., Chester, K., Peter, M. M., Robert, W. S., & Benn, S. (2020). Spatial and spatio-temporal methods for mapping malaria risk: A systematic review. BMJ Global Health, 5(10), e002919.

[27]

Weiss, D. J., Bhatt, S., Mappin, B., Van Boeckel, T. P., Smith, D. L., Hay, S. I., & Gething, P. W. (2014). Air temperature suitability for Plasmodium falciparum malaria transmission in Africa 2000-2012: A high-resolution spatiotemporal prediction. Malaria Journal, 13(1), 171.

[28]

Omonijo, A. G., Matzarakis, A., Oguntoke, O., & Adeofun, C. (2011). Influence of weather and climate on malaria occurrence based on human-biometeorological methods in Ondo state, Nigeria. Journal of Environmental Science and Engineering, 5, 1215–1228. https://api.semanticscholar.org/CorpusID:51987478

[29]

Roy, S. K., & Bhattacharjee, S. (2021). Dengue virus: Epidemiology, biology, and disease aetiology. Canadian Journal of Microbiology, 67(10), 687–702.

[30]

Dehghani, R., & Kassiri, H. (2021). A review on epidemiology of dengue viral infection as an emerging disease. Research Journal of Pharmacy and Technology, 14, 2296–2301.

[31]

Guarner, J., & Hale, G. L. (2019). Four human diseases with significant public health impact caused by mosquito-borne flaviviruses: West Nile, Zika, dengue and yellow fever. Seminars in Diagnostic Pathology, 36(3), 170–176.

[32]

Brugueras, S., Fernández-Martínez, B., Martínez-de la Puente, J., Figuerola, J., Porro, T. M., Rius, C., Larrauri, A., & Gómez-Barroso, D. (2020). Environmental drivers, climate change and emergent diseases transmitted by mosquitoes and their vectors in southern Europe: A systematic review. Environmental Research, 191, 110038.

[33]

Fouque, F., & Reeder John, C. (2019). Impact of past and on-going changes on climate and weather on vector-borne diseases transmission: A look at the evidence. Infectious Diseases of Poverty, 08, 1–9.

[34]

Chen, S. C., & Hsieh, M. H. (2012). Modeling the transmission dynamics of dengue fever: Implications of temperature effects. Science of the Total Environment, 431, 385–391.

[35]

Robert, M. A., Christofferson, R. C., Weber, P. D., & Wearing, H. J. (2019). Temperature impacts on dengue emergence in the United States: Investigating the role of seasonality and climate change. Epidemics, 28, 100344.

[36]

Lai, Y.-H (2018). The climatic factors affecting dengue fever outbreaks in southern Taiwan: An application of symbolic data analysis. BioMedical Engineering Online, 17(S2), 148.

[37]

Polwiang, S. (2020). The time series seasonal patterns of dengue fever and associated weather variables in Bangkok (2003-2017). BMC Infectious Diseases, 20(1), 208.

[38]

Wu, X., Lang, L., Ma, W., Song, T., Kang, M., He, J., Zhang, Y., Lu, L., Lin, H., & Ling, L. (2018). Non-linear effects of mean temperature and relative humidity on dengue incidence in Guangzhou, China. Science of the Total Environment, 628–629, 766–771.

[39]

Moghadami, M. (2017). A narrative review of influenza: A seasonal and pandemic disease. Iranian Journal of Medical Sciences, 42, 2–13. PMID: 28293045; PMCID: PMC5337761.

[40]

Shaw Stewart, P. D. (2016). Seasonality and selective trends in viral acute respiratory tract infections. Medical Hypotheses, 86, 104–119.

[41]

Su, W., Liu, T., Geng, X., & Yang, G. (2020). Seasonal pattern of influenza and the association with meteorological factors based on wavelet analysis in Jinan City, Eastern China, 2013–2016.. PeerJ, 8, e8626.

[42]

Zhang, S., Sun, Z., He, J., Li, Z., Han, L., Shang, J., & Hao, Y. (2022). The influences of the East Asian Monsoon on the spatio-temporal pattern of seasonal influenza activity in China. Science of the Total Environment, 843, 157024.

[43]

Ye, C., Zhu, W., Yu, J., Li, Z., Zhang, Y., Wang, Y., Gu, H., Zou, W., Hao, L., & Hu, W. (2019). Understanding the complex seasonality of seasonal influenza A and B virus transmission: Evidence from six years of surveillance data in Shanghai, China. International Journal of Infectious Diseases, 81, 57–65.

[44]

Zhu, A., Liu, J., Ye, C., Yu, J., Peng, Z., Feng, L., Wang, L., Qin, Y., Zheng, Y., & Li, Z. (2020). Characteristics of seasonal influenza virus activity in a subtropical city in China, 2013–2019.. Vaccines, 8(1), 108.

[45]

Dai, Q., Ma, W., Huang, H., Xu, K., Qi, X., Yu, H., Deng, F., Bao, C., & Huo, X. (2018). The effect of ambient temperature on the activity of influenza and influenza like illness in Jiangsu Province, China. Science of the Total Environment, 645, 684–691.

[46]

Poirier, C., Lavenu, A., Bertaud, V., Campillo-Gimenez, B., Chazard, E., Cuggia, M., & Bouzillé G. (2018). Real time influenza monitoring using hospital big data in combination with machine learning methods: Comparison study. JMIR Public Health Surveill, 4, e11361.

[47]

Venna, S. R., Tavanaei, A., Gottumukkala, R. N., Raghavan, V. V., Maida, A. S., & Nichols, S. (2019). A novel data-driven model for real-time influenza forecasting. IEEE Access, 7, 7691–7701.

[48]

Ianevski, A., Zusinaite, E., Shtaida, N., Kallio-Kokko, H., Valkonen, M., Kantele, A., Telling, K., Lutsar, I., Letjuka, P., Metelitsa, N., Oksenych, V., Dumpis, U., Vitkauskiene, A., Stašaitis, K., Öhrmalm, C., Bondeson, K., Bergqvist, A., Cox, R. J., Tenson, T., …, & Kainov, D. E. (2019). Low temperature and low UV indexes correlated with peaks of influenza virus activity in northern Europe during 2010-2018. Viruses, 11(3), 207.

[49]

Fisher, C. R., Streicker, D. G., & Schnell, M. J. (2018). The spread and evolution of rabies virus: Conquering new frontiers. Nature Reviews Microbiology, 16(4), 241–255.

[50]

León, B., González, S. F., Solís, L. M., Ramírez-Cardoce, M., Moreira-Soto, A., Cordero-Solórzano, J. M., Hutter, S. E., González-Barrientos, R., & Rupprecht, C. E. (2021). Rabies in Costa Rica - next steps towards controlling bat-borne rabies after its elimination in dogs. Yale J Biol Med, 94, 311–329. PMID: 34211351; PMCID: PMC8223541.

[51]

Whitehouse, E. R., Mandra, A., Bonwitt, J., Beasley, E. A., Taliano, J., & Rao, A. K. (2023). Human rabies despite post-exposure prophylaxis: A systematic review of fatal breakthrough infections after zoonotic exposures. The Lancet Infectious Diseases, 23(5), e167–e174.

[52]

Guo, D., Yin, W., Yu, H., Thill, J.-C., Yang, W., Chen, F., & Wang, D. (2018). The role of socioeconomic and climatic factors in the spatio-temporal variation of human rabies in China. BMC Infectious Diseases, 18(1), 526.

[53]

Mogano, K., Suzuki, T., Mohale, D., Phahladira, B., Ngoepe, E., Kamata, Y., Chirima, G., Sabeta, C., & Makita, K. (2022). Spatio-temporal epidemiology of animal and human rabies in northern South Africa between 1998 and 2017. PLoS Neglected Tropical Diseases, 16(7), e0010464.

[54]

De Benedetto, G., Giannetto, A., Riolo, K., Iaria, C., Brianti, E., & Gaglio, G. (2021). Anisakis pegreffii larvae in Sphyraena viridensis and description of granulomatous lesions. Animals, 11(12), 3449.

[55]

Gomes, T. L., Quiazon, K. M., Itoh, N., Fujise, Y., & Yoshinaga, T. (2023). Effects of temperature on eggs and larvae of Anisakis simplex sensu stricto and Anisakis pegreffii (Nematoda: Anisakidae) and its possible role on their geographic distributions. Parasitology International, 92, 102684.

[56]

Palomba, M., Paoletti, M., Colantoni, A., Rughetti, A., Nascetti, G., & Mattiucci, S. (2019). Gene expression profiles of antigenic proteins of third stage larvae of the zoonotic nematode Anisakis pegreffii in response to temperature conditions. Parasite, 26, 52.

[57]

Talapko, J., Škrlec, I., Alebić T., Jukić M., & Včev, A. (2019). Malaria: The past and the present. Microorganisms, 7(6), 179.

[58]

Moemen, Y. S., Alshater, H., & El-Sayed, I. E.-T. (2023). The influence of climate change on the Re-emergence of malaria using artificial intelligence. In A. E. Hassanien & A. Darwish (Eds.), The power of data: Driving climate change with data science and artificial intelligence innovations (pp. 241–252). Springer Nature Switzerland.

[59]

Mohammadkhani, M., Khanjani, N., Bakhtiari, B., Tabatabai, S. M., & Sheikhzadeh, K. (2019). The relation between climatic factors and malaria incidence in sistan and Baluchestan, Iran. Sage Open, 9(3), 2158244019864205.

[60]

Komen, K. (2017). Could malaria control programmes be timed to coincide with onset of rainfall? EcoHealth, 14(2), 259–271.

[61]

Panzi, E. K., Okenge, L. N., Kabali, E. H., Tshimungu, F., Dilu, A. K., Mulangu, F., & Kandala, N.-B. (2022). Geo-climatic factors of malaria morbidity in the democratic republic of Congo from 2001 to 2019. International Journal of Environmental Research and Public Health, 19(7), 3811.

[62]

Wang, Y., Wei, Y., Li, K., Jiang, X., Li, C., Yue, Q., Zee, B. C.-y., & Chong, K. C. (2022). Impact of extreme weather on dengue fever infection in four Asian countries: A modelling analysis. Environment International, 169, 107518.

[63]

Hooshyar, M., Wagner, C. E., Baker, R. E., Metcalf, C. J. E., Grenfell, B. T., & Porporato, A. (2020). Cyclic epidemics and extreme outbreaks induced by hydro-climatic variability and memory. Journal of The Royal Society Interface, 17(171), 20200521.

[64]

Wagner, C. E., Hooshyar, M., Baker, R. E., Yang, W., Arinaminpathy, N., Vecchi, G., Metcalf, C. J. E., Porporato, A., & Grenfell, B. T. (2020). Climatological, virological and sociological drivers of current and projected dengue fever outbreak dynamics in Sri Lanka. Journal of The Royal Society Interface, 17(167), 20200075.

[65]

Hooshyar, M., Wagner, C. E., Baker, R. E., Yang, W., Vecchi, G. A., Metcalf, C. J. E., Grenfell, B. T., & Porporato, A. (2020). Dengue seasonality and non-monotonic response to moisture: A model-data analysis of Sri Lanka incidence from 2011 to 2016. arXiv preprint arXiv:2009.02847. https://doi.org/10.48550/arXiv.2009.02847

[66]

Hasanah, & Susanna, D. (2019). Weather implication for dengue fever in Jakarta, Indonesia 2008-2016. KnE Life Sciences, 4(10), 184.

[67]

Kumaran, E., Doum, D., Keo, V., Sokha, L., Sam, B., Chan, V., Alexander, N., Bradley, J., Liverani, M., Prasetyo, D. B., Rachmat, A., Lopes, S., Hii, J., Rithea, L., Shafique, M., & Hustedt, J. (2018). Dengue knowledge, attitudes and practices and their impact on community-based vector control in rural Cambodia. PLoS Neglected Tropical Diseases, 12(2), e0006268.

[68]

Kulkarni, M. A., Duguay, C., & Ost, K. (2022). Charting the evidence for climate change impacts on the global spread of malaria and dengue and adaptive responses: A scoping review of reviews. Globalization and Health, 18, 1.

[69]

Widayani, P., Risky Yanuar, S., & Aulia Yogi, H. (2018). Relationship analysis of environmental factor change on the evidence of dengue fever diseases using image transformation (Case Study: Surakarta City). IOP Conference Series: Earth and Environmental Science, 169, 012061.

[70]

Marina, R., Ariati, J., Anwar, A., Astuti, E. P., & Dhewantara, P. W. (2023). Climate and vector-borne diseases in Indonesia: A systematic literature review and critical appraisal of evidence. International Journal of Biometeorology, 67, 1–28.

[71]

Pinontoan, O. R., Sumampouw, O. J., Ticoalu, J. H. V., Nelwan, J. E., Musa, E. C., & Sekeeon, J. (2022). The variability of temperature, rainfall, humidity and prevalance of dengue fever in Manado City. Bali Medical Journal, 11(1), 81–86.

[72]

Lindner-Cendrowska, K., & Bröde, P. (2021). Impact of biometeorological conditions and air pollution on influenza-like illnesses incidence in Warsaw. International Journal of Biometeorology, 65(6), 929–944.

[73]

Ballester, J., Rodó X., Robine, J.-M., & Herrmann, F. R. (2016). European seasonal mortality and influenza incidence due to winter temperature variability. Nature Climate Change, 6(10), 927–930.

[74]

Brenner, F., Marwan, N., & Hoffmann, P. (2017). Climate impact on spreading of airborne infectious diseases. The European Physical Journal Special Topics, 226(9), 1845–1856.

[75]

Imai, C., Barnett, A. G., Hashizume, M., & Honda, Y. (2016). The role of influenza in the delay between low temperature and ischemic heart disease: Evidence from simulation and mortality data from Japan. International Journal of Environmental Research and Public Health, 13(5), 454.

[76]

Deyle, E. R., Maher, M. C., Hernandez, R. D., Basu, S., & Sugihara, G. (2016). Global environmental drivers of influenza. Proceedings of the National Academy of Sciences of the U S A, 113(46), 13081–13086.

[77]

Yin, C., Zhao, W., & Pereira, P. (2022). Meteorological factors’ effects on COVID-19 show seasonality and spatiality in Brazil. Environmental Research, 208, 112690.

[78]

Marr, L. C., Tang, J. W., Van Mullekom, J., & Lakdawala, S. S. (2019). Mechanistic insights into the effect of humidity on airborne influenza virus survival, transmission and incidence. Journal of The Royal Society Interface, 16(150), 20180298.

[79]

Metz, J. A., & Finn, A. (2015). Influenza and humidity – Why a bit more damp may be good for you. Journal of Infection, 71, S54–S58.

[80]

Kudo, E., Song, E., Yockey, L. J., Rakib, T., Wong, P. W., Homer, R. J., & Iwasaki, A. (2019). Low ambient humidity impairs barrier function and innate resistance against influenza infection. Proceedings of the National Academy of Sciences, 116(22), 10905–10910.

[81]

Ali, S. T., Cowling, B. J., Wong, J. Y., Chen, D., Shan, S., Lau, E. H. Y., He, D., Tian, L., Li, Z., & Wu, P. (2022). Influenza seasonality and its environmental driving factors in mainland China and Hong Kong. Science of the Total Environment, 818, 151724.

[82]

Suntronwong, N., Vichaiwattana, P., Klinfueng, S., Korkong, S., Thongmee, T., Vongpunsawad, S., & Poovorawan, Y. (2020). Climate factors influence seasonal influenza activity in Bangkok, Thailand. PLoS One, 15(9), e0239729.

[83]

Mordecai, E. A., Paaijmans, K. P., Johnson, L. R., Balzer, C., Ben-Horin, T., de Moor, E., McNally, A., Pawar, S., Ryan, S. J., Smith, T. C., & Lafferty, K. D. (2013). Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecology Letters, 16(1), 22–30.

[84]

Colón-González, F. J., Fezzi, C., Lake, I. R., & Hunter, P. R. (2013). The effects of weather and climate change on dengue. PLoS Neglected Tropical Diseases, 7(11), e2503.

[85]

Chong, K. C., Lee, T. C., Bialasiewicz, S., Chen, J., Smith, D. W., Choy, W. S. C., Krajden, M., Jalal, H., Jennings, L., Alexander, B., Lee, H. K., Fraaij, P., Levy, A., Yeung, A. C., Tozer, S., Lau, S. Y., Jia, K. M., Tang, J. W., Hui, D. S., & Chan, P. K. (2020). Association between meteorological variations and activities of influenza A and B across different climate zones: A multi-region modelling analysis across the globe. Journal of Infection, 80(1), 84–98.

[86]

Tonnang, H. E. Z., Kangalawe, R. Y. M., & Yanda, P. Z. (2010). Predicting and mapping malaria under climate change scenarios: The potential redistribution of malaria vectors in Africa. Malaria Journal, 9(1), 111.

[87]

Kesetyaningsih, T. W., Andarini, S., Sudarto, S., & Pramoedyo, H. (2018). Determination of environmental factors affecting dengue incidence in Sleman District, Yogyakarta, Indonesia. African journal of infectious diseases, 12(1S), 13–25.

[88]

Cator, L. J., Thomas, S., Paaijmans, K. P., Ravishankaran, S., Justin, J. A., Mathai, M. T., Read, A. F., Thomas, M. B., & Eapen, A. (2013). Characterizing microclimate in urban malaria transmission settings: A case study from Chennai, India. Malaria Journal, 12(1), 84.

[89]

Mora, C., McKenzie, T., Gaw, I. M., Dean, J. M., von Hammerstein, H., Knudson, T. A., Setter, R. O., Smith, C. Z., Webster, K. M., Patz, J. A., & Franklin, E. C. (2022). Over half of known human pathogenic diseases can be aggravated by climate change. Nature Climate Change, 12(9), 869–875.

[90]

Nuraini, N., Fauzi, I. S., Fakhruddin, M., Sopaheluwakan, A., & Soewono, E. (2021). Climate-based dengue model in Semarang, Indonesia: Predictions and descriptive analysis. Infectious Disease Modelling, 6, 598–611.

[91]

Tajudeen, Y. A., Oladunjoye, I. O., Bajinka, O., & Oladipo, H. J. (2022). Zoonotic spillover in an era of rapid deforestation of tropical areas and unprecedented wildlife trafficking: Into the wild. Challenges, 13(2), 41.

[92]

Goldstein, J. E., Budiman, I., Canny, A., & Dwipartidrisa, D. (2022). Pandemics and the human-wildlife interface in Asia: Land use change as a driver of zoonotic viral outbreaks. Environmental Research Letters, 17(6), 063009.

[93]

Guo, W., Lv, C., Guo, M., Zhao, Q., Yin, X., & Zhang, L. (2023). Innovative applications of artificial intelligence in zoonotic disease management. Science in One Health, 2, 100045.

RIGHTS & PERMISSIONS

2024 The Author(s). Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

216

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/