Free iron accumulation and oxidative stress burden induce ferroptotic atrophy of chicken yolk sac during the late embryogenesis

Huichao Liu , Zehe Song , Xi He , Haihan Zhang

Animal Research and One Health ›› 2024, Vol. 2 ›› Issue (3) : 285 -299.

PDF
Animal Research and One Health ›› 2024, Vol. 2 ›› Issue (3) : 285 -299. DOI: 10.1002/aro2.74
ARTICLE

Free iron accumulation and oxidative stress burden induce ferroptotic atrophy of chicken yolk sac during the late embryogenesis

Author information +
History +
PDF

Abstract

The aim of this study was to investigate the mechanism of iron homeostasis and the ferroptosis pathway for yolk sac atrophy during late embryogenesis. To study the mechanism of yolk sac atrophy, 100 eggs were used. Further, 500 eggs were randomly divided into five treatments and in ovo feeding with different iron sources, such as FeSO4, ferrous glycinate (Fe-Gly), or deferoxamine (DFO), to study the effects of free iron content on hatching quality and embryonic development. The results showed that total iron content of yolk decreased, but yolk sac increased from embryonic(E)13 to E19 (p < 0.05). Comparison of gene expression of iron transport systems showed that free iron accumulation and dysfunction occurred in the yolk sac. Yolk sac metabolites at E19 compared to E13 were more enriched in histidine and sulfur pathways, suppressing glutathione synthesis and resulting in oxidative stress damage in the yolk sac. Combined analysis of differential metabolites and gene expression in ferroptosis pathway at E13 and E19 revealed the activation of the yolk sac during late embryogenesis was probably through up-regulation of ACSL4 expression and down-regulation of GPX4 expression. Furthermore, in ovo feeding FeSO4 shortened the incubation time compared to CON, while Fe-Gly or DFO delayed the hatching peak and increased hatching weight with less residual yolk. Collectively, it can be concluded that yolk sac atrophy during late embryogenesis may be mediated by iron disorders and provides a novel insight to modulate yolk sac nutrition, and hatching efficiency in chickens.

Keywords

chicken embryo / ferroptosis / in ovo feeding / iron homeostasis / yolk sac

Cite this article

Download citation ▾
Huichao Liu,Zehe Song,Xi He,Haihan Zhang. Free iron accumulation and oxidative stress burden induce ferroptotic atrophy of chicken yolk sac during the late embryogenesis. Animal Research and One Health, 2024, 2(3): 285-299 DOI:10.1002/aro2.74

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ye, Q., Cai, S., Wang, S., Zeng, X., Ye, C., Chen, M., Zeng, X., & Qiao, S. (2019). Maternal short and medium chain fatty acids supply during early pregnancy improves embryo survival through enhancing progesterone synthesis in rats. The Journal of Nutritional Biochemistry, 69, 98–107.

[2]

Ye, Q., Zeng, X., Cai, S., Qiao, S., & Zeng, X. (2021). Mechanisms of lipid metabolism in uterine receptivity and embryo development. Trends in Endocrinology and Metabolism: Trends in Endocrinology and Metabolism, 32(12), 1015–1030.

[3]

Yadgary, L., Cahaner, A., Kedar, O., & Uni, Z. (2010). Yolk sac nutrient composition and fat uptake in late-term embryos in eggs from young and old broiler breeder hens. Poultry Science, 89(11), 2441–2452.

[4]

Wong, E. A., & Uni, Z. (2021). Centennial review: The chicken yolk sac is a multifunctional organ. Poultry Science, 100(3), 100821.

[5]

Yadgary, L., Yair, R., & Uni, Z. (2011). The chick embryo yolk sac membrane expresses nutrient transporter and digestive enzyme genes. Poultry Science, 90(2), 410–416.

[6]

Sheng, G. (2010). Primitive and definitive erythropoiesis in the yolk sac: A bird’s eye view. International Journal of Developmental Biology, 54(6-7), 1033–1043.

[7]

Zhang, H., & Wong, E. A. (2018). Identification of cells expressing OLFM4 and LGR5 mRNA by in situ hybridization in the yolk sac and small intestine of embryonic and early post-hatch chicks. Poultry Science, 97(2), 628–633.

[8]

Zhang, H., & Wong, E. A. (2017). Spatial transcriptional profile of PepT1 mRNA in the yolk sac and small intestine in broiler chickens. Poultry Science, 96(8), 2871–2876.

[9]

Zhang, H., & Wong, E. A. (2019). Expression of avian β-defensin mRNA in the chicken yolk sac. Developmental & Comparative Immunology, 95, 89–95.

[10]

Yadgary, L., Kedar, O., Adepeju, O., & Uni, Z. (2013). Changes in yolk sac membrane absorptive area and fat digestion during chick embryonic development. Poultry Science, 92(6), 1634–1640.

[11]

Clément, R., Mauroy, B., & Cornelissen, A. J. M. (2017). Tissue growth pressure drives early blood flow in the chicken yolk sac. Developmental Dynamics, 246(8), 573–584.

[12]

Dayan, J., Reicher, N., Melkman-Zehavi, T., & Uni, Z. (2020). Incubation temperature affects yolk utilization through changes in expression of yolk sac tissue functional genes. Poultry Science, 99(11), 6128–6138.

[13]

Zhang, H., Li, H., Kidrick, J., & Wong, E. A. (2019). Localization of cells expressing SGLT1 mRNA in the yolk sac and small intestine of broilers. Poultry Science, 98(2), 984–990.

[14]

Liu, H., Ding, P., Tong, Y., He, X., Yin, Y., Zhang, H., & Song, Z. (2021). Metabolomic analysis of the egg yolk during the embryonic development of broilers. Poultry Science, 100(4), 101014.

[15]

Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., Patel, D. N., Bauer, A. J., Cantley, A. M., Yang, W. S., Morrison, B., 3rd, & Stockwell, B. R. (2012). Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 149(5), 1060–1072.

[16]

Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H., & Vandenabeele, P. (2014). Regulated necrosis: The expanding network of non-apoptotic cell death pathways. Nature Reviews Molecular Cell Biology, 15(2), 135–147.

[17]

Rideout, B. A. (2012). Investigating embryo deaths and hatching failure. Veterinary Clinics of North America: Exotic Animal Practice, 15(2), 155–162.

[18]

Anderson, G. J., Connor, W. E., & Corliss, J. D. (1990). Docosahexaenoic acid is the preferred dietary n-3 fatty acid for the development of the brain and retina. Pediatric Research, 27(1), 89–97.

[19]

Wang, J., & Pantopoulos, K. (2011). Regulation of cellular iron metabolism. Biochemical Journal, 434(3), 365–381.

[20]

Gao, M., Yi, J., Zhu, J., Minikes, A. M., Monian, P., Thompson, C. B., & Jiang, X. (2019). Role of mitochondria in ferroptosis. Molecular Cell, 73(2), 354–363.e3.

[21]

Nemeth, E., & Ganz, T. (2021). Hepcidin-Ferroportin interaction controls systemic iron homeostasis. International Journal of Molecular Sciences, 22(12), 6493.

[22]

Andolfo, I., & Russo, R. (2022). Novel insights and future perspective in iron metabolism and anemia. Metabolites, 12(2), 138.

[23]

De Rosa, M. C., Carelli Alinovi, C., Galtieri, A., Scatena, R., & Giardina, B. (2007). The plasma membrane of erythrocytes plays a fundamental role in the transport of oxygen, carbon dioxide and nitric oxide and in the maintenance of the reduced state of the heme iron. Gene, 398(1–2), 162–171.

[24]

Lee, F. S. (2019). At the crossroads of oxygen and iron sensing: Hepcidin control of HIF-2α. The Journal of Clinical Investigation, 129(1), 72–74.

[25]

Wang, S., He, X., Wu, Q., Jiang, L., Chen, L., Yu, Y., Zhang, P., Huang, X., Wang, J., Ju, Z., Min, J., & Wang, F. (2020). Transferrin receptor 1-mediated iron uptake plays an essential role in hematopoiesis. Haematologica, 105(8), 2071–2082.

[26]

Menna, T. M., & Mortola, J. P. (2002). Metabolic control of pulmonary ventilation in the developing chick embryo. Respiratory Physiology & Neurobiology, 130(1), 43–55.

[27]

Bícego, K. C., & Mortola, J. P. (2017). Thermal tachypnea in avian embryos. Journal of Experimental Biology, 220(Pt 24), 4634–4643.

[28]

Cogburn, L. A., Trakooljul, N., Chen, C., Huang, H., Wu, C. H., Carré W., Wang, X., & White, H. B., 3rd (2018). Transcriptional profiling of liver during the critical embryo-to-hatchling transition period in the chicken (Gallus gallus). BMC Genomics, 19(1), 695.

[29]

Schwartz, A. J., Das, N. K., Ramakrishnan, S. K., Jain, C., Jurkovic, M. T., Wu, J., Nemeth, E., Lakhal-Littleton, S., Colacino, J. A., & Shah, Y. M. (2019). Hepatic hepcidin/intestinal HIF-2α axis maintains iron absorption during iron deficiency and overload. The Journal of Clinical Investigation, 129(1), 336–348.

[30]

Bogdan, A. R., Miyazawa, M., Hashimoto, K., & Tsuji, Y. (2016). Regulators of iron homeostasis: New players in metabolism, cell death, and disease. Trends in biochemical sciences, 41(3), 274–286.

[31]

Anderson, G. J., & Frazer, D. M. (2017). Current understanding of iron homeostasis. The American Journal of Clinical Nutrition, 106(Suppl 6), 1559S–1566S.

[32]

Papanikolaou, G., & Pantopoulos, K. (2017). Systemic iron homeostasis and erythropoiesis. IUBMB Life, 69(6), 399–413.

[33]

Koleini, N., Shapiro, J. S., Geier, J., & Ardehali, H. (2021). Ironing out mechanisms of iron homeostasis and disorders of iron deficiency. The Journal of Clinical Investigation, 131(11), e148671.

[34]

Costain, G., Ghosh, M. C., Maio, N., Carnevale, A., Si, Y. C., Rouault, T. A., & Yoon, G. (2019). Absence of iron-responsive element-binding protein 2 causes a novel neurodegenerative syndrome. Brain: a Journal of Neurology, 142(5), 1195–1202.

[35]

Song, J., Liu, T., Yin, Y., Zhao, W., Lin, Z., Yin, Y., Lu, D., & You, F. (2021). The deubiquitinase OTUD1 enhances iron transport and potentiates host antitumor immunity. EMBO Reports, 22(2), e51162.

[36]

Santana-Codina, N., & Mancias, J. D. (2018). The role of NCOA4-mediated ferritinophagy in health and disease. Pharmaceuticals, 11(4), 114.

[37]

Quiles Del Rey, M., & Mancias, J. D. (2019). NCOA4-Mediated ferritinophagy: A potential link to neurodegeneration. Frontiers in Neuroscience, 13, 238.

[38]

Brissot, P., Pietrangelo, A., Adams, P. C., de Graaff, B., McLaren, C. E., & Loréal, O. (2018). Haemochromatosis. Nature Reviews Disease Primers, 4(1), 18016.

[39]

Yoon, D., Pastore, Y. D., Divoky, V., Liu, E., Mlodnicka, A. E., Rainey, K., Ponka, P., Semenza, G. L., Schumacher, A., & Prchal, J. T. (2006). Hypoxia-inducible factor-1 deficiency results in dysregulated erythropoiesis signaling and iron homeostasis in mouse development. Journal of Biological Chemistry, 281(35), 25703–25711.

[40]

Shah, Y. M., & Xie, L. (2014). Hypoxia-inducible factors link iron homeostasis and erythropoiesis. Gastroenterology, 146(3), 630–642.

[41]

Hentze, M. W., Muckenthaler, M. U., Galy, B., & Camaschella, C. (2010). Two to tango: Regulation of mammalian iron metabolism. Cell, 142(1), 24–38.

[42]

Rishi, G., & Subramaniam, V. N. (2017). The liver in regulation of iron homeostasis. American Journal of Physiology - Gastrointestinal and Liver Physiology, 313(3), G157–G165.

[43]

Yadgary, L., Wong, E. A., & Uni, Z. (2014). Temporal transcriptome analysis of the chicken embryo yolk sac. BMC Genomics, 15(1), 690.

[44]

Cheng, Z., & Li, Y. (2007). What is responsible for the initiating chemistry of iron-mediated lipid peroxidation: An update. Chemical Reviews, 107(3), 748–766.

[45]

Jutel, M., Blaser, K., & Akdis, C. A. (2006). The role of histamine in regulation of immune responses. Chemical Immunology and Allergy, 91, 174–187.

[46]

Branco, A. C. C. C., Yoshikawa, F. S. Y., Pietrobon, A. J., & Sato, M. N. (2018). Role of histamine in modulating the immune response and inflammation. Mediators of Inflammation, 2018, 9524075.

[47]

Brazzolotto, X., Pierrel, F., & Pelosi, L. (2014). Three conserved histidine residues contribute to mitochondrial iron transport through mitoferrins. Biochemical Journal, 460(1), 79–89.

[48]

Barile, M., Giancaspero, T. A., Leone, P., Galluccio, M., & Indiveri, C. (2016). Riboflavin transport and metabolism in humans. Journal of Inherited Metabolic Disease, 39(4), 545–557.

[49]

Suwannasom, N., Kao, I., Pruß A., Georgieva, R., & Bäumler, H. (2020). Riboflavin: The health benefits of a forgotten natural vitamin. International Journal of Molecular Sciences, 21(3), 950.

[50]

Thakur, K., Tomar, S. K., Singh, A. K., Mandal, S., & Arora, S. (2017). Riboflavin and health: A review of recent human research. Critical Reviews in Food Science and Nutrition, 57(17), 3650–3660.

[51]

Araújo, I. C. S., Café M. B., Noleto, R. A., Martins, J. M. S., Ulhoa, C. J., Guareshi, G. C., Reis, M. M., & Leandro, N. S. M. (2019). Effect of vitamin E in ovo feeding to broiler embryos on hatchability, chick quality, oxidative state, and performance. Poultry Science, 98(9), 3652–3661.

[52]

Elnesr, S. S., Elwan, H. A. M., Xu, Q. Q., Xie, C., Dong, X. Y., & Zou, X. T. (2019). Effects of in ovo injection of sulfur-containing amino acids on heat shock protein 70, corticosterone hormone, antioxidant indices, and lipid profile of newly hatched broiler chicks exposed to heat stress during incubation. Poultry Science, 98(5), 2290–2298.

[53]

Elwan, H. A. M., Elnesr, S. S., Xu, Q., Xie, C., Dong, X., & Zou, X. (2019). Effects of in ovo methionine-cysteine injection on embryonic development, antioxidant status, IGF-I and TLR4 gene expression, and jejunum histomorphometry in newly hatched broiler chicks exposed to heat stress during incubation. Animals, 9(1), 25.

[54]

Elwan, H., Xie, C., Miao, L. P., Dong, X., Zou, X. T., Mohany, M., Ahmed, M. M., Al-Rejaie, S. S., & Elnesr, S. S. (2021). Methionine alleviates aflatoxinb1-induced broiler chicks embryotoxicity through inhibition of caspase-dependent apoptosis and enhancement of cellular antioxidant status. Poultry Science, 100(8), 101103.

[55]

Nikoofard, V., Mahdavi, A. H., Samie, A. H., & Jahanian, E. (2016). Effects of different sulphur amino acids and dietary electrolyte balance levels on performance, jejunal morphology, and immunocompetence of broiler chicks. Journal of Animal Physiology and Animal Nutrition, 100(1), 189–199.

[56]

Greger, J. L., & Mulvaney, J. (1985). Absorption and tissue distribution of zinc, iron and copper by rats fed diets containing lactalbumin, soy and supplemental sulfur-containing amino acids. The Journal of Nutrition, 115(2), 200–210.

[57]

Azad, M. A. K., Liu, G., Bin, P., Ding, S., Kong, X., Guan, G., & Yin, Y. (2020). Sulfur-containing amino acid supplementation to gilts from late pregnancy to lactation altered offspring’s intestinal microbiota and plasma metabolites. Applied Microbiology and Biotechnology, 104(3), 1227–1242.

[58]

Sharma, G. S., Bhattacharya, R., & Singh, L. R. (2021). Functional inhibition of redox regulated heme proteins: A novel mechanism towards oxidative stress induced by homocysteine. Redox Biology, 46, 102080.

[59]

Filiponi, M. P., Gaigher, B., Caetano-Silva, M. E., Alvim, I. D., & Pacheco, M. T. B. (2019). Microencapsulation performance of Fe-peptide complexes and stability monitoring. Food Research International, 125, 108505.

[60]

Bovell-Benjamin, A. C., Viteri, F. E., & Allen, L. H. (2000). Iron absorption from ferrous bisglycinate and ferric trisglycinate in whole maize is regulated by iron status. The American Journal of Clinical Nutrition, 71(6), 1563–1569.

[61]

McMillen, S., & Lönnerdal, B. (2021). Postnatal iron supplementation with ferrous sulfate vs. Ferrous bis-glycinate chelate: Effects on iron metabolism, growth, and central nervous system development in Sprague Dawley rat pups. Nutrients, 13(5), 1406.

[62]

McMillen, S., Thomas, S., Liang, E., Nonnecke, E. B., Slupsky, C., & Lönnerdal, B. (2022). Gut microbiome alterations following postnatal iron supplementation depend on iron form and persist into adulthood. Nutrients, 14(3), 412.

[63]

Bentur, Y., McGuigan, M., & Koren, G. (1991). Deferoxamine (desferrioxamine). New toxicities for an old drug. Drug Safety, 6(1), 37–46.

[64]

Codd, R., Richardson-Sanchez, T., Telfer, T. J., & Gotsbacher, M. P. (2018). Advances in the chemical biology of desferrioxamine B. ACS Chemical Biology, 13(1), 11–25.

[65]

Li, Y., Zeng, X., Lu, D., Yin, M., Shan, M., & Gao, Y. (2021). Erastin induces ferroptosis via ferroportin-mediated iron accumulation in endometriosis. Human Reproduction, 36(4), 951–964.

[66]

Symington, E. A., Baumgartner, J., Malan, L., Wise, A. J., Ricci, C., Zandberg, L., & Smuts, C. M. (2019). Maternal iron-deficiency is associated with premature birth and higher birth weight despite routine antenatal iron supplementation in an urban South African setting: The NuPED prospective study. PLoS One, 14(9), e0221299.

[67]

Halliwell, B. (1989). Protection against tissue damage in vivo by desferrioxamine: What is its mechanism of action? Free Radical Biology & Medicine, 7(6), 645–651.

[68]

Kletkiewicz, H., Klimiuk, M., Woźniak, A., Mila-Kierzenkowska, C., Dokladny, K., & Rogalska, J. (2020). How to improve the antioxidant defense in asphyxiated newborns-lessons from animal models. Antioxidants, 9(9), 898.

[69]

Kletkiewicz, H., Nowakowska, A., Siejka, A., Mila-Kierzenkowska, C., Woźniak, A., Caputa, M., & Rogalska, J. (2016). Deferoxamine prevents cerebral glutathione and vitamin E depletions in asphyxiated neonatal rats: Role of body temperature. International Journal of Hyperthermia, 32(2), 211–220.

RIGHTS & PERMISSIONS

2024 The Author(s). Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

206

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/