mRNA Vaccine Against Mpox: A Promising Healthcare Strategy

Mohammad Shah Alam , Md. Arman Sharif , Md. Aminul Islam , M. Nazmul Hoque

Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (2) : 177 -180.

PDF
Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (2) : 177 -180. DOI: 10.1002/aro2.70009
COMMENTARY

mRNA Vaccine Against Mpox: A Promising Healthcare Strategy

Author information +
History +
PDF

Keywords

Mpox / MPXV / mRNA vaccine / whole-virus vaccine

Cite this article

Download citation ▾
Mohammad Shah Alam, Md. Arman Sharif, Md. Aminul Islam, M. Nazmul Hoque. mRNA Vaccine Against Mpox: A Promising Healthcare Strategy. Animal Research and One Health, 2025, 3(2): 177-180 DOI:10.1002/aro2.70009

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

E. M. Bunge, B. Hoet, L. Chen, et al., “The Changing Epidemiology of Human Monkeypox—A Potential Threat? A Systematic Review,” PLoS Neglected Tropical Diseases16, no. 2 (2022): e0010141, https://doi.org/10.1371/journal.pntd.0010141.

[2]

J. L. Americo, P. L. Earl, and B. Moss, “Virulence Differences of Mpox (Monkeypox) Virus Clades I, IIa, and IIb. 1 in a Small Animal Model,” Proceedings of the National Academy of Sciences120, no. 8 (2023): e2220415120, https://doi.org/10.1073/pnas.22204151.

[3]

D. E. Martínez-Fernández, D. Fernández-Quezada, F. A. G. Casillas-Muñoz, et al., “Human Monkeypox: A Comprehensive Overview of Epidemiology, Pathogenesis, Diagnosis, Treatment, and Prevention Strategies,” Pathogens12, no. 7 (2023): 947, https://doi.org/10.3390/pathogens12070947.

[4]

Control ECfDPa, Outbreak of Mpox Caused by Monkeypox Virus Clade I in the Democratic Republic of the Congo, (2024), https://www.ecdc.europa.eu/en/news-events/outbreak-mpox-caused-monkeypox-virus-clade-i-democratic-republic-congo.

[5]

W. H. Organization, WHO Director-General Declares Mpox Outbreak a Public Health Emergency of International Concern, (2024), https://iedcr.portal.gov.bd/sites/default/files/files/iedcr.portal.gov.bd/npfblock/88202378_5e6f_4748_8033_3193b0f74f0f/2024-08-19-03-59-ceaa2a26a791c928426f2aca4eedb42d.pdf.

[6]

W. H. Organization, Mpox: Multi-Country External Situation Report no.45 (WHO, 2025), https://cdn.who.int/media/docs/default-source/documents/emergencies/mpox-sitrep_-45.pdf?sfvrsn=67f9f699_1&download=true.

[7]

E. M. Mucker, A. W. Freyn, S. L. Bixler, et al., “Comparison of Protection Against Mpox Following mRNA or Modified Vaccinia Ankara Vaccination in Nonhuman Primates,” Cell187, no. 20 (2024): 5540-5553.e10, https://doi.org/10.1016/j.cell.2024.08.043.

[8]

B. W. Petersen, I. K. Damon, C. A. Pertowski, et al., “Clinical Guidance for Smallpox Vaccine Use in a Postevent Vaccination Program,” Morbidity and Mortality Weekly Report Recommendations and Reports64, no. RR-02 (2015): 1-26.

[9]

M. T. Rock, S. M. Yoder, T. R. Talbot, K. M. Edwards, and J. E. Crowe, “Cellular Immune Responses to Diluted and Undiluted Aventis Pasteur Smallpox Vaccine,” Journal of Infectious Diseases194, no. 4 (2006): 435-443, https://doi.org/10.1086/505506.

[10]

S. F. Ahmed, M. S. Sohail, A. A. Quadeer, and M. R. McKay, “Vaccinia-Virus-Based Vaccines Are Expected to Elicit Highly Cross-Reactive Immunity to the 2022 Monkeypox Virus,” Viruses14, no. 9 (2022): 1960, https://doi.org/10.3390/v14091960.

[11]

P. Fine, Z. Jezek, B. Grab, and H. Dixon, “The Transmission Potential of Monkeypox Virus in Human Populations,” International Journal of Epidemiology17, no. 3 (1988): 643-650, https://doi.org/10.1093/ije/17.3.643.

[12]

N. P. Deputy, J. Deckert, A. N. Chard, et al., “Vaccine Effectiveness of JYNNEOS Against Mpox Disease in the United States,” New England Journal of Medicine388, no. 26 (2023): 2434-2443, https://doi.org/10.1056/NEJMoa2215201.

[13]

Y.-C. Lin, T.-H. Wen, W.-L. Shih, S. H. Vermund, and C.-T. Fang, “Impact of Vaccination and High-Risk Group Awareness on the Mpox Epidemic in the United States, 2022-2023: A Modelling Study,” EClinicalMedicine68 (2024): 102407, https://doi.org/10.1016/j.eclinm.2023.102407.

[14]

M. R. Islam, M. J. Hossain, A. Roy, et al., “Repositioning Potentials of Smallpox Vaccines and Antiviral Agents in Monkeypox Outbreak: A Rapid Review on Comparative Benefits and Risks,” Health science reports5, no. 5 (2022): e798, https://doi.org/10.1002/hsr2.798.

[15]

W. Vega-Rodriguez and H. Ly, “Getting Ahead of Monkeypox: Learning From the COVID-19 Pandemic Experience to Prevent the Potentially New Monkeypox Pandemic,” Journal of Medical Virology95, no. 1 (2023): e28146, https://doi.org/10.1002/jmv.28146.

[16]

J. A. Wolff, R. W. Malone, P. Williams, et al., “Direct Gene Transfer Into Mouse Muscle In Vivo,” Science247, no. 4949 (1990): 1465-1468, https://doi.org/10.1126/science.1690918.

[17]

O. A. Haabeth, J. J. Lohmeyer, A. Sallets, et al., “An mRNA SARS-CoV-2 Vaccine Employing Charge-Altering Releasable Transporters With a TLR-9 Agonist Induces Neutralizing Antibodies and T Cell Memory,” ACS Central Science7, no. 7 (2021): 1191-1204, https://doi.org/10.1021/acscentsci.1c00361.

[18]

X. Zhao, X. Pan, Y. Wang, and Y. Zhang, “Targeting Neoantigens for Cancer Immunotherapy,” Biomarker Research9, no. 1 (2021): 61, https://doi.org/10.1186/s40364-021-00315-7.

[19]

M. Zhang, J. Sun, M. Li, and X. Jin, “Modified mRNA-LNP Vaccines Confer Protection Against Experimental DENV-2 Infection in Mice,” Molecular Therapy Methods & Clinical Development18 (2020): 702-712, https://doi.org/10.1016/j.omtm.2020.07.013.

[20]

M. S. Alam, “Insight Into SARS-CoV-2 Omicron Variant Immune Escape Possibility and Variant Independent Potential Therapeutic Opportunities,” Heliyon9, no. 2 (2023): e13285, https://doi.org/10.1016/j.heliyon.2023.e13285.

[21]

F. Hou, Y. Zhang, X. Liu, et al., “mRNA Vaccines Encoding Fusion Proteins of Monkeypox Virus Antigens Protect Mice From Vaccinia Virus Challenge,” Nature Communications14, no. 1 (2023): 5925, https://doi.org/10.1038/s41467-023-41628-5.

[22]

T. Ye, J. Zhou, C. Guo, et al., “Polyvalent Mpox mRNA Vaccines Elicit Robust Immune Responses and Confer Potent Protection Against Vaccinia Virus,” Cell Reports43, no. 6 (2024): 114269, https://doi.org/10.1016/j.celrep.2024.114269.

[23]

Z. Fang, V. S. Monteiro, P. A. Renauer, et al., “Polyvalent mRNA Vaccination Elicited Potent Immune Response to Monkeypox Virus Surface Antigens,” Cell Research33, no. 5 (2023): 407-410, https://doi.org/10.1038/s41422-023-00792-5.

[24]

J. Zeng, Y. Li, L. Jiang, et al., “Mpox Multi-Antigen mRNA Vaccine Candidates by a Simplified Manufacturing Strategy Afford Efficient Protection Against Lethal Orthopoxvirus Challenge,” Emerging Microbes & Infections12, no. 1 (2023): 2204151, https://doi.org/10.1080/22221751.2023.2204151.

[25]

H. Xia, Y.-R. He, X.-Y. Zhan, and G.-F. Zha, “Mpox Virus mRNA-Lipid Nanoparticle Vaccine Candidates Evoke Antibody Responses and Drive Protection Against the Vaccinia Virus Challenge in Mice,” Antiviral Research216 (2023): 105668, https://doi.org/10.1016/j.antiviral.2023.105668.

[26]

N. Zhang, X. Cheng, Y. Zhu, et al., “Multi-valent mRNA Vaccines Against Monkeypox Enveloped or Mature Viron Surface Antigens Demonstrate Robust Immune Response and Neutralizing Activity,” Science China Life Sciences66, no. 10 (2023): 2329-2341, https://doi.org/10.1007/s11427-023-2378-x.

[27]

E. Li, Q. Gong, J. Zhang, et al., “An Mpox Quadrivalent mRNA Vaccine Protects Mice From Lethal Vaccinia Virus Challenge,” Antiviral Research230 (2024): 105974, https://doi.org/10.1016/j.antiviral.2024.105974.

[28]

C. A. Cotter, M. A. Ignacio, J. L. Americo, et al., “Mpox mRNA-1769 Vaccine Inhibits Orthopoxvirus Replication at Intranasal, Intrarectal, and Cutaneous Sites of Inoculation,” NPJ Vaccines9, no. 1 (2024): 256, https://doi.org/10.1038/s41541-024-01052-2.

[29]

A. Zuiani, C. L. Dulberger, N. S. De Silva, et al., “A Multivalent mRNA Monkeypox Virus Vaccine (BNT166) Protects Mice and Macaques From Orthopoxvirus Disease,” Cell187, no. 6 (2024): 1363-1373.e12, https://doi.org/10.1016/j.cell.2024.01.017.

RIGHTS & PERMISSIONS

2025 The Author(s). Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/