Genomic Insights Into the Population and Antibiotic Resistance Changes of Salmonella Pullorum in China

Ke Wu , Jie Zhang , Jing Zuo , Qian Chen , Honglin Peng , Changwei Lei , Hongning Wang

Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (2) : 188 -194.

PDF
Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (2) : 188 -194. DOI: 10.1002/aro2.70005
ARTICLE

Genomic Insights Into the Population and Antibiotic Resistance Changes of Salmonella Pullorum in China

Author information +
History +
PDF

Abstract

Salmonella Pullorum is a host-restricted pathogen that causes substantial economic losses in the poultry industry. This study explores the genomic characteristics of S. Pullorum based on the genomes available on GenBank, with a particular focus on its evolution and antibiotic resistance in China. The analysis reveals that most S. Pullorum strains belong to ST92 and ST2151. The S. Pullorum strains harbor a complex repertoire of virulence genes and nine antibiotic resistance genes (ARGs), including aminoglycoside resistance genes aac (6′)-Iaa, aadA5, aph (3″)-Ib, and aph (6)-Id; the tetracycline resistance gene tet(A); sulfonamide resistance genes dfrA17, sul1, and sul2; and the beta-lactam resistance gene blaTEM-1B. The IncX1, IncQ1, and IncN plasmids play significant roles in the co-transmission of these ARGs. In addition, phylogenetic analysis indicates a closer genetic relationship among S. Pullorum strains isolated from the same country, highlighting the potential regional transmissions. Notably, S. Pullorum strains in China carry a higher number of ARGs than strains from other countries. Evolutionary dynamics reveals that the population size of S. Pullorum in China has stabilized since 2016, while the antibiotic resistance continues to rise. These results underscore the growing risk of S. Pullorum to the poultry industry and public health in China, highlighting the need for ongoing surveillance and effective control measures.

Keywords

antibiotic resistance / genome / poultry industry / Salmonella Pullorum

Cite this article

Download citation ▾
Ke Wu, Jie Zhang, Jing Zuo, Qian Chen, Honglin Peng, Changwei Lei, Hongning Wang. Genomic Insights Into the Population and Antibiotic Resistance Changes of Salmonella Pullorum in China. Animal Research and One Health, 2025, 3(2): 188-194 DOI:10.1002/aro2.70005

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. Liu, C. Meng, S. Han, et al., “Development of a 1-Step Multiplex PCR Assay for the Detection of S. Enteritidis, S. Pullorum, S. Typhimurium, and S. Infantis Associated With Poultry Production,” Poultry Science103, no. 9 (2024): 104043, https://doi.org/10.1016/j.psj.2024.104043.

[2]

Q. Li, X. Wang, J. Xia, et al., “Salmonella-Containing Vacuole Development in Avian Cells and Characteristic of cigR in Salmonella Enterica Serovar Pullorum Replication Within Macrophages,” Veterinary Microbiology223 (2018): 65-71, https://doi.org/10.1016/j.vetmic.2018.07.013.

[3]

Y. Cheng, J. Zhang, Q. Huang, Q. Luo, T. Zhang, and R. Zhou, “Genome-Based Analysis of Genetic Diversity, Antimicrobial Susceptibility, and Virulence Gene Distribution in Salmonella Pullorum Isolates From Poultry in China,” Animals14, no. 18 (2024): 2675, https://doi.org/10.3390/ani14182675.

[4]

X. Shen, A. Zhang, J. Gu, et al., “Evaluating Salmonella Pullorum Dissemination and Shedding Patterns and Antibody Production in Infected Chickens,” BMC Veterinary Research18, no. 1 (2022): 240, https://doi.org/10.1186/s12917-022-03335-z.

[5]

J. Lu, L. Li, F. Pan, et al., “PagC Is Involved in Salmonella Pullorum OMVs Production and Affects Biofilm Production,” Veterinary Microbiology247 (2020): 108778, https://doi.org/10.1016/j.vetmic.2020.108778.

[6]

R. Figueiredo, R. M. Card, J. Nunez, et al., “Detection of an Mcr-1-Encoding Plasmid Mediating Colistin Resistance in Salmonella Enterica From Retail Meat in Portugal,” Journal of Antimicrobial Chemotherapy71, no. 8 (2016): 2338-2340, https://doi.org/10.1093/jac/dkw240.

[7]

Z. Yan, Y. Li, Y. Ni, et al., “Plasmid-Borne Tigecycline Resistance Gene tet(X4) in Salmonella Enterica and Escherichia Coli Isolates From a Pediatric Patient With Diarrhea,” Drug Resistance Updates77 (2024): 101145, https://doi.org/10.1016/j.drup.2024.101145.

[8]

H. Zhang, W. Chen, X. Lu, et al., “Emergence and Characterization of the High-Level Tigecycline Resistance Gene tet(X4) in Salmonella Enterica Serovar Rissen From Food in China,” Foodbourne Pathogens & Disease (2024), https://doi.org/10.1089/fpd.2024.0101.

[9]

J. Robertson and J. H. E. Nash, “MOB-Suite: Software Tools for Clustering, Reconstruction and Typing of Plasmids From Draft Assemblies,” Microbial Genomics4, no. 8 (2018): e000206, https://doi.org/10.1099/mgen.0.000206.

[10]

A. Carattoli and H. Hasman, “PlasmidFinder and In Silico pMLST: Identification and Typing of Plasmid Replicons in Whole-Genome Sequencing (WGS),” Methods in Molecular Biology2075 (2020): 285-294, https://doi.org/10.1007/978-1-4939-9877-7_20.

[11]

N. J. Croucher, A. J. Page, T. R. Connor, et al., “Rapid Phylogenetic Analysis of Large Samples of Recombinant Bacterial Whole Genome Sequences Using Gubbins,” Nucleic Acids Research43, no. 3 (2015): e15, https://doi.org/10.1093/nar/gku1196.

[12]

B. Q. Minh, H. A. Schmidt, O. Chernomor, et al., “IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era,” Molecular Biology and Evolution37, no. 5 (2020): 1530-1534, https://doi.org/10.1093/molbev/msaa015.

[13]

G. Tonkin-Hill, J. A. Lees, S. D. Bentley, S. D. W. Frost, and J. Corander, “RhierBAPS: An R Implementation of the Population Clustering Algorithm hierBAPS,” Wellcome Open Research3 (2018): 93, https://doi.org/10.12688/wellcomeopenres.14694.1.

[14]

A. J. Drummond and A. Rambaut, “BEAST: Bayesian Evolutionary Analysis by Sampling Trees,” BMC Evolutionary Biology7, no. 1 (2007): 214, https://doi.org/10.1186/1471-2148-7-214.

[15]

T. Seemann, “Prokka: Rapid Prokaryotic Genome Annotation,” Bioinformatics30, no. 14 (2014): 2068-2069, https://doi.org/10.1093/bioinformatics/btu153.

[16]

A. J. Page, C. A. Cummins, M. Hunt, et al., “Roary: Rapid Large-Scale Prokaryote Pan Genome Analysis,” Bioinformatics31, no. 22 (2015): 3691-3693, https://doi.org/10.1093/bioinformatics/btv421.

[17]

C. P. Cantalapiedra, A. Hernandez-Plaza, I. Letunic, P. Bork, and J. Huerta-Cepas, “eggNOG-Mapper V2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale,” Molecular Biology and Evolution38, no. 12 (2021): 5825-5829, https://doi.org/10.1093/molbev/msab293.

[18]

Y. Shen, R. Zhang, D. Shao, et al., “Genomic Shift in Population Dynamics of Mcr-1-Positive Escherichia coli in Human Carriage,” Genomics, Proteomics & Bioinformatics20, no. 6 (2022): 1168-1179, https://doi.org/10.1016/j.gpb.2022.11.006.

[19]

K. Wu, Y. Zhang, W. Xu, et al., “Transmission of Carbapenem-Resistant Enterobacterales Producing NDM-5 During the Broiler Breeding Process in China,” Veterinary Microbiology298 (2024): 110282, https://doi.org/10.1016/j.vetmic.2024.110282.

[20]

K. Wu, J. Wang, Z. Yan, et al., “Genomic Adaptation of Clostridium perfringens to Human Intestine,” iMetaOmics1, no. 2 (2024): e38, https://doi.org/10.1002/imo2.38.

[21]

Y. Tang, N. Foster, M. A. Jones, and P. A. Barrow, “Model of Persistent Salmonella Infection: Salmonella Enterica Serovar Pullorum Modulates the Immune Response of the Chicken From a Th17-type Response Towards a Th2-type Response,” Infection and Immunity86, no. 8 (2018): e00307-e00318, https://doi.org/10.1128/IAI.00307-18.

[22]

X. Kang, X. Zhou, Y. Tang, et al., “Characterization of Two-Component System CitB Family in Salmonella Pullorum,” International Journal of Molecular Sciences23, no. 17 (2022): 10201, https://doi.org/10.3390/ijms231710201.

[23]

X. Z. Zhang, C. W. Lei, J. X. Zeng, et al., “An IncX1 Plasmid Isolated From Salmonella Enterica Subsp. Enterica Serovar Pullorum Carrying bla(TEM-1B), Sul2, Arsenic Resistant Operons,” Plasmid100 (2018): 14-21, https://doi.org/10.1016/j.plasmid.2018.09.007.

[24]

J. Wang, J. Li, F. Liu, Y. Cheng, and J. Su, “Characterization of Salmonella Enterica Isolates From Diseased Poultry in Northern China Between 2014 and 2018,” Pathogens9, no. 2 (2020): 95, https://doi.org/10.3390/pathogens9020095.

[25]

X. Shen, L. Yin, A. Zhang, et al., “Prevalence and Characterization of Salmonella Isolated From Chickens in Anhui, China,” Pathogens12, no. 3 (2023): 465, https://doi.org/10.3390/pathogens12030465.

[26]

F. Sun, X. Li, Y. Wang, et al., “Epidemic Patterns of Antimicrobial Resistance of Salmonella Enterica Serovar Gallinarum Biovar Pullorum Isolates in China During the Past Half-Century,” Poultry Science100, no. 3 (2021): 100894, https://doi.org/10.1016/j.psj.2020.12.007.

RIGHTS & PERMISSIONS

2025 The Author(s). Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/