RNA-Based Biopesticides: Pioneering Precision Solutions for Sustainable Aquaculture in China

Yiran Huang , Yingmin Dai , Zhuotong Huang , Mengqi Zhang , Lijun Xiu , Xianhui Zhang , Youyu Zhang , Lixing Huang

Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (2) : 165 -176.

PDF
Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (2) : 165 -176. DOI: 10.1002/aro2.70000
REVIEW

RNA-Based Biopesticides: Pioneering Precision Solutions for Sustainable Aquaculture in China

Author information +
History +
PDF

Abstract

RNA-based biopesticides, heralding the third revolution in agricultural pest and disease control, emerge as pivotal for sustainable aquaculture in China. This review delves into the background, evolution, and applications of RNA biopesticides, emphasizing their transformative impact on aquaculture disease management. RNA-based biopesticides offer myriad advantages. Utilizing dsRNA formulations ensures species-specific targeting, thereby minimizing effects on nontarget organisms. Swift environmental degradation of dsRNA addresses concerns about residual effects and pollution. Crucially, the host’s genetic structure remains unchanged, averting heritable variations. Additionally, resistance challenges are easily mitigated through targeted gene replacement. Nevertheless, challenges impede the technology’s full potential. Factors such as target gene selection, varying effectiveness across pests, and susceptibility of dsRNA to pathogen degradation can influence overall efficacy. The widespread use of RNA pesticides prompts scrutiny of their impact on nontarget organisms’ immune systems, necessitating meticulous consideration of exogenous dsRNA biosafety. Furthermore, assessing the toxicity of viruses and microorganisms as dsRNA carriers is crucial. High production costs and lower efficiency in large-scale production compared to conventional pesticides demand urgent attention. Future research should prioritize the optimization of dsRNA delivery systems to improve stability and targeting precision. Investigating the integration of RNA-based pesticides with other sustainable agricultural practices may further mitigate environmental impacts. Moreover, advancements in cost-effective production techniques and regulatory frameworks will be critical for enabling the widespread adoption of RNA biopesticides, thereby securing their role in the future management of global aquaculture diseases.

Keywords

disease control / dsRNA formulations / RNA-based biopesticides / sustainable aquaculture

Cite this article

Download citation ▾
Yiran Huang, Yingmin Dai, Zhuotong Huang, Mengqi Zhang, Lijun Xiu, Xianhui Zhang, Youyu Zhang, Lixing Huang. RNA-Based Biopesticides: Pioneering Precision Solutions for Sustainable Aquaculture in China. Animal Research and One Health, 2025, 3(2): 165-176 DOI:10.1002/aro2.70000

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. G. Murray and E. J. Peeler, “A Framework for Understanding the Potential for Emerging Diseases in Aquaculture,” Preventive Veterinary Medicine67, no. 2-3 (2005): 223-235, https://doi.org/10.1016/j.prevetmed.2004.10.012.

[2]

R. Guan, D. Chu, X. Han, X. Miao, and H. Li, “Advances in the Development of Microbial Double-Stranded RNA Production Systems for Application of RNA Interference in Agricultural Pest Control,” Frontiers in Bioengineering and Biotechnology9 (2021): 753-790, https://doi.org/10.3389/fbioe.2021.753790.

[3]

A. Adams, “Progress, Challenges and Opportunities in Fish Vaccine Development,” Fish & Shellfish Immunology90 (2019): 210-214, https://doi.org/10.1016/j.fsi.2019.04.066.

[4]

B. K. Singh, M. Delgado-Baquerizo, E. Egidi, et al., “Climate Change Impacts on Plant Pathogens, Food Security and Paths Forward,” Nature Reviews Microbiology21, no. 10 (2023): 640-656, https://doi.org/10.1038/s41579-023-00900-7.

[5]

X. Qiu, RNA Pesticides: The Third Revolution in the History of Pesticides-One of the Innovation Pesticide Series Reports (Shanghai: Everbright Securities, 2018).

[6]

M. Guan, C. H. A. O. Zijian, Y. A. N. Shuo, et al., “Research Status and Development Prospect of RNA Pestcide,” Modern Agrochemicals22, no. 02 (2023): 11-18.

[7]

R. Kaur, A. Choudhury, S. Chauhan, A. Ghosh, R. Tiwari, and M. V. Rajam, “RNA Interference and Crop Protection Against Biotic Stresses,” Physiology and Molecular Biology of Plants27, no. 10 (2021): 1-21, https://doi.org/10.1007/s12298-021-01064-5.

[8]

M. H. Hashimi, R. Hashimi, and Q. Ryan, “Toxic Effects of Pesticides on Humans, Plants, Animals, Pollinators and Beneficial Organisms,” Asian Plant Research Journal5 (2020): 37-47, https://doi.org/10.9734/aprj/2020/v5i430114.

[9]

G. M. Daraban, R. M. Hlihor, and D. Suteu, “Pesticides vs. Biopesticides: From Pest Management to Toxicity and Impacts on the Environment and Human Health,” Toxics11, no. 12 (2023): 983.

[10]

S. J. Fletcher, P. T. Reeves, B. T. Hoang, and N. Mitter, “A Perspective on RNAi-Based Biopesticides,” Frontiers of Plant Science11 (2020): 51, https://doi.org/10.3389/fpls.2020.00051.

[11]

M. Rao and S. Sockanathan, “Molecular Mechanisms of RNAi: Implications for Development and Disease,” Birth Defects Research Part C: Embryo Today—Reviews75, no. 1 (2005): 28-42, https://doi.org/10.1002/bdrc.20030.

[12]

B. Ghoshal and H. Sanfaçon, “Symptom Recovery in Virus-Infected Plants: Revisiting the Role of RNA Silencing Mechanisms,” Virology479 (2015): 167-179, https://doi.org/10.1016/j.virol.2015.01.008.

[13]

A. Fire, S. Q. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello, “Potent and Specific Genetic Interference by Double-Stranded RNA in Caenorhabditis elegans,” Nature391, no. 6669 (1998): 806-811, https://doi.org/10.1038/35888.

[14]

D. Baulcombe, “RNA Silencing in Plants,” Nature431, no. 7006 (2004): 356-363, https://doi.org/10.1038/nature02874.

[15]

C. Napoli, C. Lemieux, and R. Jorgensen, “Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in Trans,” Plant Cell2, no. 4 (1990): 279-289, https://doi.org/10.1105/tpc.2.4.279.

[16]

A. R. Van der Krol, L. A. Mur, M. Beld, J. N. M. Mol, and A. R. Stuitje, “Flavonoid Genes in Petunia: Addition of a Limited Number of Gene Copies May Lead to a Suppression of Gene Expression,” Plant Cell2, no. 4 (1990): 291-299, https://doi.org/10.2307/3869077.

[17]

M. Ghildiyal and P. D. Zamore, “Small Silencing RNAs: An Expanding Universe,” Nature Reviews Genetics10, no. 2 (2009): 94-108, https://doi.org/10.1038/nrg2504.

[18]

S. Schuster, P. Miesen, and R. P. van Rij, “Antiviral RNAi in Insects and Mammals: Parallels and Differences,” Viruses11, no. 5 (2019): 448, https://doi.org/10.3390/v11050448.

[19]

D. V. Nguyen, O. Christiaens, P. Bossier, and G. Smagghe, “RNA Interference in Shrimp and Potential Applications in Aquaculture,” Reviews in Aquaculture10, no. 3 (2018): 573-584, https://doi.org/10.1111/raq.12187.

[20]

Y. Pan, C. Qiu, Y. Wang, et al., “Development of RNA Drugs and its Application in Aquaculture,” Biotechnology Bulletin37, no. 2 (2021): 203.

[21]

Y. C. Su, J. L. Wu, and J. R. Hong, “Betanodavirus Non-Structural Protein B2: A Novel Necrotic Death Factor That Induces Mitochondria-Mediated Cell Death in Fish Cells,” Virology385, no. 1 (2009): 143-154, https://doi.org/10.1016/j.virol.2008.11.036.

[22]

L. T. Dang, H. Kondo, I. Hirono, and T. Aoki, “Inhibition of Red Seabream Iridovirus (RSIV) Replication by Small Interfering RNA (siRNA) in a Cell Culture System,” Antiviral Research77, no. 2 (2008): 142-149, https://doi.org/10.1016/j.antiviral.2007.10.007.

[23]

G. Li, J. Z. Niu, M. Zotti, et al., “Characterization and Expression Patterns of Key Ecdysteroid Biosynthesis and Signaling Genes in a Spider Mite (Panonychus Citri),” Insect Biochemistry and Molecular Biology87 (2017): 136-146, https://doi.org/10.1016/j.ibmb.2017.06.009.

[24]

S. Lee, S. Shrestha, S. V. Prasad, and Y. Kim, “Role of a Small G Protein Ras in Cellular Immune Response of the Beet Armyworm, Spodoptera Exigua,” Journal of Insect Physiology57, no. 3 (2011): 356-362, https://doi.org/10.1016/j.jinsphys.2010.12.003.

[25]

K. De Schutter, C. N. T. Taning, L. Van Daele, E. J. M. Van Damme, P. Dubruel, and G. Smagghe, “RNAi-Based Biocontrol Products: Market Status, Regulatory Aspects, and Risk Assessment,” Frontiers in Insect Science1 (2022), https://doi.org/10.3389/finsc.2021.818037.

[26]

B. O. Gvakharia, P. Bebas, B. Cymborowski, and J. M. Giebultowicz, “Disruption of Sperm Release From Insect Testes by Cytochalasin and β-actin mRNA Mediated Interference,” Cellular and Molecular Life Sciences CMLS60, no. 8 (2003): 1744-1751, https://doi.org/10.1007/s00018-003-3139-z.

[27]

R. N. Araujo, A. Santos, F. S. Pinto, N. Gontijo, M. Lehane, and M. Pereira, “RNA Interference of the Salivary Gland Nitrophorin 2 in the Triatomine Bug Rhodnius prolixus (Hemiptera: Reduviidae) by dsRNA Ingestion or Injection,” Insect Biochemistry and Molecular Biology36, no. 9 (2006): 683-693, https://doi.org/10.1016/j.ibmb.2006.05.012.

[28]

Y. B. Mao, W. J. Cai, J. W. Wang, et al., “Silencing a Cotton Bollworm P450 Monooxygenase Gene by Plant-Mediated RNAi Impairs Larval Tolerance of Gossypol,” Nature Biotechnology25, no. 11 (2007): 1307-1313, https://doi.org/10.1038/nbt1352.

[29]

X. Li, M. Zhang, and H. Zhang, “RNA Interference of Four Genes in Adult Bactrocera Dorsalis by Feeding Their dsRNAs,” PLoS One6, no. 3 (2011): e17788, https://doi.org/10.1371/journal.pone.0017788.

[30]

Z. Fan, Z. Zhang, X. Zhang, X. Kong, F. Liu, and S. Zhang, “Five Visual and Olfactory Target Genes for RNAi in Agrilus Planipennis,” Frontiers in Genetics13 (2022): 835324, https://doi.org/10.3389/fgene.2022.835324.

[31]

Z. Hu, U. Parekh, N. Maruta, Y. Trusov, and J. R. Botella, “Down-Regulation of Fusarium Oxysporum Endogenous Genes by Host-Delivered RNA Interference Enhances Disease Resistance,” Frontiers in Chemistry3 (2015): 1, https://doi.org/10.3389/fchem.2015.00001.

[32]

K. Maruekawong, O. Namlamoon, and P. Attasart, “Systemic Gene Silencing From Oral Uptake of dsRNA in Litopenaeus Vannamei Requires Both Clathrin-Mediated Endocytosis and LvSID-1,” Aquaculture548 (2022): 737557, https://doi.org/10.1016/j.aquaculture.2021.737557.

[33]

K. Zenke, Y. K. Nam, and K. H. Kim, “Development of siRNA Expression Vector Utilizing Rock Bream β-actin Promoter: A Potential Therapeutic Tool Against Viral Infection in Fish,” Applied Microbiology and Biotechnology85, no. 3 (2010): 679-690, https://doi.org/10.1007/s00253-009-2177-3.

[34]

W. Tirasophon, S. Yodmuang, W. Chinnirunvong, N. Plongthongkum, and S. Panyim, “Therapeutic Inhibition of Yellow Head Virus Multiplication in Infected Shrimps by YHV-Protease dsRNA,” Antiviral Research74, no. 2 (2007): 150-155, https://doi.org/10.1016/j.antiviral.2006.11.002.

[35]

B. D. Schyth, N. Lorenzen, and F. S. Pedersen, “A High Throughput In Vivo Model for Testing Delivery and Antiviral Effects of siRNAs in Vertebrates,” Molecular Therapy15, no. 7 (2007): 1366-1372, https://doi.org/10.1038/sj.mt.6300150.

[36]

V. Saksmerprome, P. Charoonnart, W. Gangnonngiw, and B. Withyachumnarnkul, “A Novel and Inexpensive Application of RNAi Technology to Protect Shrimp From Viral Disease,” Journal of Virological Methods162, no. 1-2 (2009): 213-217, https://doi.org/10.1016/j.jviromet.2009.08.010.

[37]

C. Ongvarrasopone, P. Saejia, M. Chanasakulniyom, and S. Panyim, “Inhibition of Taura Syndrome Virus Replication in Litopenaeus Vannamei through Silencing the LvRab7 Gene Using Double-Stranded RNA,” Archives of Virology156, no. 7 (2011): 1117-1123, https://doi.org/10.1007/s00705-011-0952-9.

[38]

Y. H. Chen, X. T. Jia, L. Zhao, et al., “Identification and Functional Characterization of Dicer2 and Five Single VWC Domain Proteins of Litopenaeus Vannamei,” Developmental & Comparative Immunology35, no. 6 (2011): 661-671, https://doi.org/10.1016/j.dci.2011.01.010.

[39]

Y. H. Chen, L. Zhao, X. T. Jia, et al., “Isolation and Characterization of cDNAs Encoding Ars2 and Pasha Homologues, Two Components of the RNA Interference Pathway in Litopenaeus Vannamei,” Fish & Shellfish Immunology32, no. 2 (2012): 373-380, https://doi.org/10.1016/j.fsi.2011.11.032.

[40]

P. Somchai, S. Jitrakorn, S. Thitamadee, M. Meetam, and V. Saksmerprome, “Use of Microalgae Chlamydomonas Reinhardtii for Production of Double-Stranded RNA Against Shrimp Virus,” Aquaculture Reports3 (2016): 178-183, https://doi.org/10.1016/j.aqrep.2016.03.003.

[41]

A. Inberg, “ BioDirect™ to Control Varroa Destructor-New Biologicals for Effective Protection From the Devastating Honey Bee Parasitic Mite,” in 2016 International Congress of Entomology (ESA, 2016).

[42]

M. Gotesman, H. Soliman, R. Besch, and M. El-Matbouli, “In Vitro Inhibition of Cyprinid Herpesvirus-3 Replication by RNAi,” Journal of Virological Methods206 (2014): 63-66, https://doi.org/10.1016/j.jviromet.2014.05.022.

[43]

M. C. W. van Hulten, M. Westenberg, S. D. Goodall, and J. M. Vlak, “Identification of Two Major Virion Protein Genes of White Spot Syndrome Virus of Shrimp,” Virology266, no. 2 (2000): 227-236, https://doi.org/10.1006/viro.1999.0088.

[44]

J. Xu, F. Han, and X. Zhang, “Silencing Shrimp White Spot Syndrome Virus (WSSV) Genes by siRNA,” Antiviral Research73, no. 2 (2007): 126-131, https://doi.org/10.1016/j.antiviral.2006.08.007.

[45]

C. M. Escobedo-Bonilla, S. Vega-Pena, and C. H. Mejía-Ruiz, “Efficacy of Double-Stranded RNA Against White Spot Syndrome Virus (WSSV) Non-structural (Orf89, Wsv191) and Structural (Vp28, Vp26) Genes in the Pacific White Shrimp Litopenaeus Vannamei,” Journal of King Saud University Science27, no. 2 (2015): 182-188, https://doi.org/10.1016/j.jksus.2014.11.004.

[46]

S. Ufaz, A. Balter, C. Tzror, et al., “Anti-Viral RNAi Nanoparticles Protect Shrimp Against White Spot Disease,” Molecular Systems Design & Engineering3, no. 1 (2018): 38-48, https://doi.org/10.1039/c7me00092h.

[47]

P. Attasart, R. Kaewkhaw, C. Chimwai, U. Kongphom, O. Namramoon, and S. Panyim, “Inhibition of Penaeus Monodon Densovirus Replication in Shrimp by Double-Stranded RNA,” Archives of Virology155, no. 6 (2010): 825-832, https://doi.org/10.1007/s00705-010-0649-5.

[48]

C. Chimwai, P. Tongboonsong, O. Namramoon, S. Panyim, and P. Attasart, “A Formulated Double-Stranded RNA Diet for Reducing Penaeus monodon Densovirus Infection in Black Tiger Shrimp,” Journal of Invertebrate Pathology134 (2016): 23-26, https://doi.org/10.1016/j.jip.2016.01.003.

[49]

J. Kurita, K. Nakajima, I. Hirono, and T. Aoki, “Complete Genome Sequencing of Red Sea Bream Iridovirus (RSIV),” Fisheries Science68, no. sup2 (2002): 1113-1115, https://doi.org/10.2331/fishsci.68.sup2_1113.

[50]

J. Xie, L. , M. Deng, et al., “Inhibition of Reporter Gene and Iridovirus-Tiger Frog Virus in Fish Cell by RNA Interference,” Virology338, no. 1 (2005): 43-52, https://doi.org/10.1016/j.virol.2005.04.040.

[51]

J. Ma, L. Zeng, Y. Fan, Y. Zhou, N. Jiang, and Q. Chen, “Significant Inhibition of Two Different Genotypes of Grass Carp Reovirus In Vitro Using Multiple shRNAs Expression Vectors,” Virus Research189 (2014): 47-55, https://doi.org/10.1016/j.virusres.2014.05.009.

[52]

L. Owens and S. Malham, “Review of the RNA Interference Pathway in Molluscs Including Some Possibilities for Use in Bivalves in Aquaculture,” Journal of Marine Science and Engineering3, no. 1 (2015): 87-99, https://doi.org/10.3390/jmse3010087.

[53]

K. La Fauce and L. Owens, “RNA Interference With Special Reference to Combating Viruses of Crustacea,” Indian Journal of Virology23, no. 2 (2012): 226-243, https://doi.org/10.1007/s13337-012-0084-1.

[54]

H. Ohashi, N. Umeda, N. Hirazawa, Y. Ozaki, C. Miura, and T. Miura, “Expression of Vasa (Vas)-Related Genes in Germ Cells and Specific Interference With Gene Functions by Double-Stranded RNA in the Monogenean, Neobenedenia Girellae,” International Journal for Parasitology37, no. 5 (2007): 515-523, https://doi.org/10.1016/j.ijpara.2006.11.003.

[55]

M. Saleh, G. Kumar, A. A. Abdel-Baki, M. A. Dkhil, M. El-Matbouli, and S. Al-Quraishy, “In Vitro Gene Silencing of the Fish Microsporidian Heterosporis Saurida by RNA Interference,” Nucleic Acid Therapeutics26, no. 4 (2016): 250-256, https://doi.org/10.1089/nat.2016.0613.

[56]

S. Sarker and M. El-Matbouli, “Can RNAi Target Salmonid Whirling Disease In Vivo,” Nucleic Acid Therapeutics25, no. 5 (2015): 285-286, https://doi.org/10.1089/nat.2015.0549.

[57]

C. Eichner, F. Nilsen, S. Grotmol, and S. Dalvin, “A Method for Stable Gene Knock-Down by RNA Interference in Larvae of the Salmon Louse (Lepeophtheirus salmonis),” Experimental Parasitology140 (2014): 44-51, https://doi.org/10.1016/j.exppara.2014.03.014.

[58]

C. Eichner, E. Harasimczuk, F. Nilsen, S. Grotmol, and S. Dalvin, “Molecular Characterisation and Functional Analysis of LsChi2, a Chitinase Found in the Salmon Louse (Lepeophtheirus salmonis Salmonis, Krøyer 1838),” Experimental Parasitology151 (2015): 39-48, https://doi.org/10.1016/j.exppara.2015.01.011.

[59]

S. Dalvin, P. Frost, E. Biering, et al., “Functional Characterisation of the Maternal Yolk-Associated Protein (LsYAP) Utilising Systemic RNA Interference in the Salmon Louse (Lepeophtheirus salmonis) (Crustacea: Copepoda),” International Journal for Parasitology39, no. 13 (2009): 1407-1415, https://doi.org/10.1016/j.ijpara.2009.04.004.

[60]

C. Tröße, H. Kongshaug, M. Dondrup, and F. Nilsen, “Characterisation of Iron Regulatory Protein 1A and 1B in the Blood-Feeding Copepod Lepeophtheirus salmonis,” Experimental Parasitology157 (2015): 1-11, https://doi.org/10.1016/j.exppara.2015.06.010.

[61]

L. Sandlund, H. Kongshaug, F. Nilsen, and S. Dalvin, “Molecular Characterization and Functional Analysis of Components of the TOR Pathway of the Salmon Louse, Lepeophtheirus salmonis (Krøyer, 1838),” Experimental Parasitology188 (2018): 83-92, https://doi.org/10.1016/j.exppara.2018.04.004.

[62]

Y. Carpio, L. Basabe, J. Acosta, et al., “Novel Gene Isolated From Caligus Rogercresseyi: A Promising Target for Vaccine Development Against Sea Lice,” Vaccine29, no. 15 (2011): 2810-2820, https://doi.org/10.1016/j.vaccine.2011.01.109.

[63]

A. Z. Komisarczuk, S. Grotmol, and F. Nilsen, “Ionotropic Receptors Signal Host Recognition in the Salmon Louse (Lepeophtheirus salmonis, Copepoda),” PLoS One12, no. 6 (2017): e0178812, https://doi.org/10.1371/journal.pone.0178812.

[64]

W. Kong, L. Huang, Y. Su, et al., “Investigation of Possible Molecular Mechanisms Underlying the Regulation of Adhesion in Vibrio Alginolyticus With Comparative Transcriptome Analysis,” Antonie van Leeuwenhoek107, no. 5 (2015): 1197-1206, https://doi.org/10.1007/s10482-015-0411-9.

[65]

H. Cai, Y. Ma, Y. Qin, L. Zhao, Q. Yan, and L. Huang, “Vvrr2: A New Vibrio ncRNA Involved in Dynamic Synthesis of Multiple Biofilm Matrix Exopolusaccharides, Biofilm Structuring and Virulence,” Aquaculture563 (2023): 738925, https://doi.org/10.1016/j.aquaculture.2022.738925.

[66]

Y. Zuo, L. Zhao, X. Xu, et al., “Mechanisms Underlying the Virulence Regulation of New Vibrio Alginolyticus ncRNA Vvrr1 With a Comparative Proteomic Analysis,” Emerging Microbes & Infections8, no. 1 (2019): 1604-1618, https://doi.org/10.1080/22221751.2019.1687261.

[67]

J. Wang, Q. Li, and L. Huang, “Effect of the Zinc Transporter ZupT on the Virulence Mechanisms of Mesophilic Aeromonas Salmonicida SRW-OG1,” Animal Research and One Health1, no. 1 (2023): 30-42, https://doi.org/10.1002/aro2.17.

[68]

L. Huang, Y. Qin, Q. Yan, G. Lin, B. Huang, and W. Huang, “MinD Plays an Important Role in Aeromonas Hydrophila Adherence to Anguilla Japonica Mucus,” Gene565, no. 2 (2015): 275-281, https://doi.org/10.1016/j.gene.2015.04.031.

[69]

Q. Li and L. Huang, “RNA Biopesticides: A Cutting-Edge Approach to Combatting Aquaculture Diseases and Ensuring Food Security,” Modern Agriculture2 (2024): e70006, https://doi.org/10.1002/moda.70006.

[70]

Y. Hu, T. Zhao, Y. Guo, et al., “100 Essential Questions for the Future of Agriculture,” Modern Agriculture1 (2023): 4-12, https://doi.org/10.1002/moda.5.

[71]

R.B. Guan, L. I. HaiChao, and M. I. A. O. XueXia, “Commercialization Status and Existing Problems of RNA Biopesticides,” Scientia Agricultura Sinica55, no. 15 (2022): 2949-2960.

[72]

P. Bachman, J. Fischer, Z. Song, E. Urbanczyk-Wochniak, and G. Watson, “Environmental Fate and Dissipation of Applied dsRNA in Soil, Aquatic Systems, and Plants,” Frontiers in Plant Science11 (2020): 508351, https://doi.org/10.3389/fpls.2020.00021.

[73]

O. Christiaens, J. Niu, and T. T. C. Nji, “RNAi in Insects: A Revolution in Fundamental Research and Pest Control Applications,” Insects11, no. 7 (2020): 415, https://doi.org/10.3390/insects11070415.

[74]

Y. Li, G. Lin, T. Pengsakul, Q. Yan, and L. Huang, “Antibiotic Resistance in Vibrio Parahaemolyticus: Mechanisms, Dissemination, and Global Public Health Challenges-A Comprehensive Review,” Reviews in Aquaculture17, no. 1 (2025): e13010, https://doi.org/10.1111/raq.13010.

[75]

R. He, Y. Zuo, Q. Li, Q. Yan, and L. Huang, “Cooperative Mechanisms of LexA and HtpG in the Regulation of Virulence Gene Expression in Pseudomonas Plecoglossicida,” Current Research in Microbial Sciences8 (2025 Jan 29): 100351, https://doi.org/10.1016/j.crmicr.2025.100351.

RIGHTS & PERMISSIONS

2025 The Author(s). Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/