Integrating meta-analysis of genome-wide association study with Pig Genotype-Tissue Expression resources uncovers the genetic architecture for age at first farrowing in pigs

Qing Lin , Xueyan Feng , Tingting Li , Xiangchun Pan , Shuqi Diao , Yahui Gao , Xiaolong Yuan , Jiaqi Li , Xiangdong Ding , Zhe Zhang

Animal Research and One Health ›› 2024, Vol. 2 ›› Issue (3) : 238 -249.

PDF
Animal Research and One Health ›› 2024, Vol. 2 ›› Issue (3) : 238 -249. DOI: 10.1002/aro2.62
ARTICLE

Integrating meta-analysis of genome-wide association study with Pig Genotype-Tissue Expression resources uncovers the genetic architecture for age at first farrowing in pigs

Author information +
History +
PDF

Abstract

Age at first farrowing (AFF) is a reproductive trait with low heritability and high importance in the pig industry. To enhance the statistical power of genome-wide association study (GWAS) and further explore the genetic nature of AFF, we first conducted GWAS meta-analysis using three Yorkshire populations, and then integrated the Pig Genotype-Tissue Expression (PigGTEx) resources to interpret their potential regulatory mechanism. Additionally, we compared the AFF in pig with the age at first birth (AFB) of human using GWAS summary statistics. We detected 18 independent variants in GWAS meta-analysis and 8 genes in gene-based association analysis significantly associated with AFF. By integrating the PigGTEx resource, we conducted transcriptome-wide association study (TWAS) and colocalization analysis on 34 pig tissues. In TWAS, we detected 18 significant gene-tissue pairs, such as DCAF6 in uterus and CREG1 in blood. In colocalization, we found 111 potential candidate tissue-gene pairs, such as GJD4 and LYPLAL1. We found that the homologous gene, CHST10, might be the potential candidate gene between humans in AFB and pigs in AFF. In conclusion, integrating GWAS meta-analysis and PigGTEx resources is a meaningful way to decipher the genetic architecture of complex traits. We found that DCAF6, CREG1, GJD4, and LYPLAL1 are candidate genes with high reliability for AFF in swine. The comparative analysis showed that CHST10 might play a potentially critical role in AFB/AFF across human and pigs.

Keywords

age at first farrowing / colocalization / integrative analysis / meta-analysis / transcriptome-wide association study

Cite this article

Download citation ▾
Qing Lin, Xueyan Feng, Tingting Li, Xiangchun Pan, Shuqi Diao, Yahui Gao, Xiaolong Yuan, Jiaqi Li, Xiangdong Ding, Zhe Zhang. Integrating meta-analysis of genome-wide association study with Pig Genotype-Tissue Expression resources uncovers the genetic architecture for age at first farrowing in pigs. Animal Research and One Health, 2024, 2(3): 238-249 DOI:10.1002/aro2.62

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albert, F. W., & Kruglyak, L. (2015). The role of regulatory variation in complex traits and disease. Nature Reviews Genetics, 16(4), 197–212.

[2]

Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., Ziller, M. J., Amin, V., Whitaker, J. W., Schultz, M. D., Ward, L. D., Sarkar, A., Quon, G., Sandstrom, R. S., Eaton, M. L., Wu, Y.-C., & Kellis, M. (2015). Integrative analysis of 111 reference human epigenomes. Nature, 518(7539), 317–330.

[3]

Aguet, F., Anand, S., Ardlie, K. G., Gabriel, S., Getz, G. A., Graubert, A., Hadley, K., Handsaker, R. E., Huang, K. H., Kashin, S., Li, X., MacArthur, D. G., Meier, S. R., Nedzel, J. L., Nguyen, D. T., Segrè A. V., Todres, E., Balliu, B., Barbeira, A. N., & Volpi, S. (2020). The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science, 369(6509), 1318–1330.

[4]

Pan, Z., Yao, Y., Yin, H., Cai, Z., Wang, Y., Bai, L., Kern, C., Halstead, M., Chanthavixay, G., Trakooljul, N., Wimmers, K., Sahana, G., Su, G., Lund, M. S., Fredholm, M., Karlskov-Mortensen, P., Ernst, C. W., Ross, P., Tuggle, C. K., Fang, L., & Zhou, H. (2021). Pig genome functional annotation enhances the biological interpretation of complex traits and human disease. Nature Communications, 12(1), 5848.

[5]

Liu, S., Gao, Y., Canela-Xandri, O., Wang, S., Yu, Y., Cai, W., Li, B., Xiang, R., Chamberlain, A. J., Pairo-Castineira, E., D’Mellow, K., Rawlik, K., Xia, C., Yao, Y., Navarro, P., Rocha, D., Li, X., Yan, Z., Li, C., & Fang, L. (2022). A multi-tissue atlas of regulatory variants in cattle. Nature Genetics, 54(9), 1438–1447.

[6]

Teng, J., Gao, Y., Yin, H., Bai, Z., Liu, S., Zeng, H., Bai, L., Cai, Z., Zhao, B., Li, X., Xu, Z., Lin, Q., Pan, Z., Yang, W., Yu, X., Guan, D., Hou, Y., Keel, B. N., Rohrer, G. A., & Fang, L. (2024). A compendium of genetic regulatory effects across pig tissues. Nature Genetics, 56, 1–12.

[7]

Wainberg, M., Sinnott-Armstrong, N., Mancuso, N., Barbeira, A. N., Knowles, D. A., Golan, D., Ermel, R., Ruusalepp, A., Quertermous, T., Hao, K., Björkegren, J. L. M., Im, H. K., Pasaniuc, B., Rivas, M. A., & Kundaje, A. (2019). Opportunities and challenges for transcriptome-wide association studies. Nature Genetics, 51(4), 592–599.

[8]

Plagnol, V., Smyth, D. J., Todd, J. A., & Clayton, D. G. (2009). Statistical independence of the colocalized association signals for type 1 diabetes and RPS26 gene expression on chromosome 12q13. Biostatistics, 10(2), 327–334.

[9]

Corredor, F.-A., Sanglard, L. P., Ross, J. W., Keating, A. F., Leach, R. J., & Serão, N. V. L. (2021). Phenotypic and genomic relationships between vulva score categories and reproductive performance in first-parity sows. Journal of Animal Science and Biotechnology, 12(1), 7.

[10]

Wang, Y., Ding, X., Tan, Z., Xing, K., Yang, T., Pan, Y., Wang, Y., Mi, S., Sun, D., & Wang, C. (2018). Genome-wide association study for reproductive traits in a Large White pig population. Animal Genetics, 49(2), 127–131.

[11]

Dubon, M. A. C., Pedrosa, V. B., Feitosa, F. L. B., Costa, R. B., de Camargo, G. M. F., Silva, M. R., & Pinto, L. F. B. (2021). Identification of novel candidate genes for age at first calving in Nellore cows using a SNP chip specifically developed for Bos taurus indicus cattle. Theriogenology, 173, 156–162.

[12]

Mills, M. C., Tropf, F. C., Brazel, D. M., van Zuydam, N., Vaez, A., Agbessi, M., Ahsan, H., Alves, I., Andiappan, A. K., Arindrarto, W., Awadalla, P., Battle, A., Beutner, F., Jan Bonder, M., Boomsma, D. I., Christiansen, M. W., Claringbould, A., Deelen, P., Esko, T., & Day, F. R. (2021). Identification of 371 genetic variants for age at first sex and birth linked to externalising behaviour. Nature Human Behaviour, 5(12), 1717–1730.

[13]

Mehta, D., Tropf, F. C., Gratten, J., Bakshi, A., Zhu, Z., Bacanu, S.-A., Hemani, G., Magnusson, P. K. E., Barban, N., Esko, T., Metspalu, A., Snieder, H., Mowry, B. J., Kendler, K. S., Yang, J., Visscher, P. M., McGrath, J. J., Mills, M. C., Wray, N. R., & Wu, J. Q. (2016). Evidence for genetic overlap between schizophrenia and age at first birth in women. JAMA Psychiatry, 73(5), 497.

[14]

Cai, Z., Christensen, O. F., Lund, M. S., Ostersen, T., & Sahana, G. (2022). Large-scale association study on daily weight gain in pigs reveals overlap of genetic factors for growth in humans. BMC Genomics, 23(1), 1–13.

[15]

Guigó R. (2023). Genome annotation: From human genetics to biodiversity genomics. Cell Genomics, 3(8), 100375.

[16]

Santhanam, N., Sanchez-Roige, S., Liang, Y., Chitre, A. S., Munro, D., Chen, D., Cheng, R., Nyasimi, F., Perry, M., Gao, J., George, A. M., Gileta, A., Holl, K., Hughson, A., King, C. P., Lamparelli, A. C., Martin, C. D., Martinez, A. G., Mi, S., & Im, H. K. (2023). RatXcan: Framework for translating genetic results between species via transcriptome-wide association analyses. bioRxiv, 2022.06.03.494719. https://www.biorxiv.org/content/10.1101/2022.06.03.494719v4

[17]

Chang, C. C., Chow, C. C., Tellier, L. C. A. M., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2014). Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience, 4(1), 7.

[18]

Browning, B. L., Zhou, Y., & Browning, S. R. (2018). A one-penny imputed genome from next-generation reference panels. The American Journal of Human Genetics, 103(3), 338–348.

[19]

Jiang, L., Zheng, Z., Qi, T., Kemper, K. E., Wray, N. R., Visscher, P. M., & Yang, J. (2019). A resource-efficient tool for mixed model association analysis of large-scale data. Nature Genetics, 51(12), 1749–1755.

[20]

Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: A tool for genome-wide complex trait analysis. The American Journal of Human Genetics, 88(1), 76–82.

[21]

Willer, C. J., Li, Y., & Abecasis, G. R. (2010). METAL: Fast and efficient meta-analysis of genomewide association scans. Bioinformatics, 26(17), 2190–2191.

[22]

de Leeuw, C. A., Neale, B. M., Heskes, T., & Posthuma, D. (2016). The statistical properties of gene-set analysis. Nature Reviews Genetics, 17(6), 353–364.

[23]

Yang, J., Ferreira, T., Morris, A. P., Medland, S. E., Madden, P. A. F., Heath, A. C., Martin, N. G., Montgomery, G. W., Weedon, M. N., Loos, R. J., Frayling, T. M., McCarthy, M. I., Hirschhorn, J. N., Goddard, M. E., & Visscher, P. M. (2012). Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nature Genetics, 44(4), 369–375.

[24]

Pan, X., Li, Q., Chen, D., Gong, W., Li, N., Jiang, Y., Zhang, H., Chen, Y., & Yuan, X. (2021). Alternative splicing dynamics of the hypothalamus–pituitary–ovary axis during pubertal transition in gilts. Frontiers in Genetics, 12.

[25]

Watanabe, K., Stringer, S., Frei, O., Umićević Mirkov, M., de Leeuw, C., Polderman, T. J. C., van der Sluis, S., Andreassen, O. A., Neale, B. M., & Posthuma, D. (2019). A global overview of pleiotropy and genetic architecture in complex traits. Nature Genetics, 51(9), 1339–1348.

[26]

Groza, T., Gomez, F. L., Mashhadi, H. H., Muñoz-Fuentes, V., Gunes, O., Wilson, R., Cacheiro, P., Frost, A., Keskivali-Bond, P., Vardal, B., McCoy, A., Cheng, T. K., Santos, L., Wells, S., Smedley, D., Mallon, A.-M., & Parkinson, H. (2023). The International Mouse Phenotyping Consortium: Comprehensive knockout phenotyping underpinning the study of human disease. Nucleic Acids Research, 51(D1), D1038-D1045.

[27]

Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44–57.

[28]

Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 37(1), 1–13.

[29]

Barbeira, A. N., Dickinson, S. P., Bonazzola, R., Zheng, J., Wheeler, H. E., Torres, J. M., Torstenson, E. S., Shah, K. P., Garcia, T., Edwards, T. L., Stahl, E. A., Huckins, L. M., Aguet, F., Nicolae, D. L., Cox, N. J., Im, H. K., Getz, G., Hadley, K., & Handsaker, R. E. (2018). Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nature Communications, 9(1), 1825.

[30]

Wang, G., Sarkar, A., Carbonetto, P., & Stephens, M. (2020). A simple new approach to variable selection in regression, with application to genetic fine mapping. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 82(5), 1273–1300.

[31]

Liu, J., Qi, Y., Chao, J., Sathuvalli, P., Y. Lee, L., & Li, S. (2021). CREG1 promotes lysosomal biogenesis and function. Autophagy, 17(12), 4249–4265.

[32]

von Maltzahn, J., Wulf, V., Matern, G., & Willecke, K. (2011). Connexin39 deficient mice display accelerated myogenesis and regeneration of skeletal muscle. Experimental Cell Research, 317(8), 1169–1178.

[33]

Lei, X., Callaway, M., Zhou, H., Yang, Y., & Chen, W. (2015). Obesity associated Lyplal1 gene is regulated in diet induced obesity but not required for adipocyte differentiation. Molecular and Cellular Endocrinology, 411, 207–213.

[34]

Suzuki-Anekoji, M., Suzuki, A., Wu, S.-W., Angata, K., Murai, K. K., Sugihara, K., Akama, T. O., Khoo, K.-H., Nakayama, J., Fukuda, M. N., & Fukuda, M. (2013). In vivo regulation of steroid hormones by the Chst10 sulfotransferase in mouse. Journal of Biological Chemistry, 288(7), 5007–5016.

[35]

Fu, Y., Li, J., Tang, Q., Zou, C., Shen, L., Jin, L., Li, C., Fang, C., Liu, R., Li, M., Zhao, S., & Li, C. (2018). Integrated analysis of methylome, transcriptome and miRNAome of three pig breeds. Epigenomics, 10(5), 597–612.

[36]

Welzenbach, J., Neuhoff, C., Heidt, H., Cinar, M., Looft, C., Schellander, K., Tholen, E., & Große-Brinkhaus, C. (2016). Integrative analysis of metabolomic, proteomic and genomic data to reveal functional pathways and candidate genes for drip loss in pigs. International Journal of Molecular Sciences, 17(9), 1426.

[37]

Yan, Z., Huang, H., Freebern, E., Santos, D. J. A., Dai, D., Si, J., Ma, C., Cao, J., Guo, G., Liu, G. E., Ma, L., Fang, L., & Zhang, Y. (2020). Integrating RNA-Seq with GWAS reveals novel insights into the molecular mechanism underpinning ketosis in cattle. BMC Genomics, 21(1), 489.

[38]

Liu, X., Zhang, J., Xiong, X., Chen, C., Xing, Y., Duan, Y., Xiao, S., Yang, B., & Ma, J. (2021). An integrative analysis of transcriptome and GWAS data to identify potential candidate genes influencing meat quality traits in pigs. Frontiers in Genetics, 12.

[39]

Luo, H., Hu, L., Brito, L. F., Dou, J., Sammad, A., Chang, Y., Ma, L., Guo, G., Liu, L., Zhai, L., Xu, Q., & Wang, Y. (2022). Weighted single-step GWAS and RNA sequencing reveals key candidate genes associated with physiological indicators of heat stress in Holstein cattle. Journal of Animal Science and Biotechnology, 13(1), 108.

[40]

Miao, Y., Zhao, Y., Wan, S., Mei, Q., Wang, H., Fu, C., Li, X., Zhao, S., Xu, X., & Xiang, T. (2023). Integrated analysis of genome-wide association studies and 3D epigenomic characteristics reveal the BMP2 gene regulating loin muscle depth in Yorkshire pigs. PLoS Genetics, 19(6), e1010820.

[41]

Yengo, L., Vedantam, S., Marouli, E., Sidorenko, J., Bartell, E., Sakaue, S., Graff, M., Eliasen, A. U., Jiang, Y., Raghavan, S., Miao, J., Arias, J. D., Graham, S. E., Mukamel, R. E., Spracklen, C. N., Yin, X., Chen, S.-H., Ferreira, T., Highland, H. H., & Hirschhorn, J. N. (2022). A saturated map of common genetic variants associated with human height. Nature, 610(7933), 704–712.

[42]

Koketsu, Y., Takahashi, H., & Akachi, K. (1999). Longevity, lifetime pig production and productivity, and age at first conception in a cohort of gilts observed over six years on commercial farms. Journal of Veterinary Medical Science, 61(9), 1001–1005.

[43]

Nonneman, D. J., Schneider, J. F., Lents, C. A., Wiedmann, R. T., Vallet, J. L., & Rohrer, G. A. (2016). Genome-wide association and identification of candidate genes for age at puberty in swine. BMC Genetics, 17(1), 50.

[44]

Chen, H.-H., Chen, W.-P., Yan, W.-L., Huang, Y.-C., Chang, S.-W., Fu, W.-M., Su, M.-J., Yu, I.-S., Tsai, T.-C., Yan, Y.-T., Tsao, Y.-P., & Chen, S.-L. (2015). NRIP is a novel Z-disc protein to activate calmodulin signaling for skeletal muscle contraction and regeneration. Journal of Cell Science.

[45]

Yang, K.-C., Chuang, K.-W., Yen, W.-S., Lin, S.-Y., Chen, H.-H., Chang, S.-W., Lin, Y.-S., Wu, W.-L., Tsao, Y.-P., Chen, W.-P., & Chen, S.-L. (2019). Deficiency of nuclear receptor interaction protein leads to cardiomyopathy by disrupting sarcomere structure and mitochondrial respiration. Journal of Molecular and Cellular Cardiology, 137, 9–24.

[46]

Endo, Y., Hashimoto, M., Kusudo, T., Okada, T., Takeuchi, T., Goto, A., & Yamashita, H. (2022). CREG1 improves diet-induced obesity via uncoupling protein 1-dependent manner in mice. Genes to Cells, 27(3), 202–213.

[47]

Song, H., Tian, X., Liu, D., Liu, M., Liu, Y., Liu, J., Mei, Z., Yan, C., & Han, Y. (2021). CREG1 improves the capacity of the skeletal muscle response to exercise endurance via modulation of mitophagy. Autophagy, 17(12), 4102–4118.

[48]

Richmond-Rakerd, L. S., Moffitt, T. E., Arseneault, L., Belsky, D. W., Connor, J., Corcoran, D. L., Harrington, H., Houts, R. M., Poulton, R., Prinz, J. A., Ramrakha, S., Sugden, K., Wertz, J., Williams, B. S., & Caspi, A. (2020). A polygenic score for age-at-first-birth predicts disinhibition. Journal of Child Psychology and Psychiatry, 61(12), 1349–1359.

RIGHTS & PERMISSIONS

2024 The Authors. Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

281

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/