miR-429 inhibits palmitic acid-induced apoptosis of porcine subcutaneous preadipocytes by targeting Sox5

Yonglin Hua , Haigang Cao , Ying Peng , Jie Liu , Xiao Li , Jianjun Jin , Xine Shi

Animal Research and One Health ›› 2024, Vol. 2 ›› Issue (3) : 250 -259.

PDF
Animal Research and One Health ›› 2024, Vol. 2 ›› Issue (3) : 250 -259. DOI: 10.1002/aro2.60
ARTICLE

miR-429 inhibits palmitic acid-induced apoptosis of porcine subcutaneous preadipocytes by targeting Sox5

Author information +
History +
PDF

Abstract

MicroRNAs (miRNAs) can regulate several physiological processes of cells after transcription, such as cell proliferation, differentiation, and apoptosis. In this study, we found that 500 µM of palmitic acid (PA) could significantly induce the apoptosis of porcine subcutaneous preadipocytes (p < 0.05). The overexpression of miR-429 decreased the apoptotic rate of porcine preadipocytes and inhibited the expression of the proapoptotic gene P53 (p < 0.05). In addition, miR-429 can specifically bind to the 3’ untranslated region of Sox5, and the upregulation of miR-429 downregulated Sox5 expression. However, Sox5 overexpression promoted the apoptosis of porcine preadipocytes (p < 0.01); the co-transfection of miR-429 and pcDNA3.1-Sox5 into preadipocytes could reverse the inhibition of PA-induced apoptosis by miR-429. In conclusion, the present results provide a theoretical basis for elucidating the molecular mechanisms by which miR-429 and Sox5 regulate the apoptosis of porcine subcutaneous preadipocytes.

Keywords

apoptosis / miR-429 / palmitic acid (PA) / porcine subcutaneous preadipocytes / Sox5

Cite this article

Download citation ▾
Yonglin Hua, Haigang Cao, Ying Peng, Jie Liu, Xiao Li, Jianjun Jin, Xine Shi. miR-429 inhibits palmitic acid-induced apoptosis of porcine subcutaneous preadipocytes by targeting Sox5. Animal Research and One Health, 2024, 2(3): 250-259 DOI:10.1002/aro2.60

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu, M. F., Huseinovic, A., Jaspers, A., Yuan, L. S., & Steenbergen, R. D. M. (2023). Downregulation of miR-193a/b-3p during HPV-induced cervical carcinogenesis contributes to anchorage-independent growth through PI3K-AKT pathway regulators. Journal of Medical Virology, 95(3).

[2]

Cui, X. W., You, L. H., Zhu, L. J., Wang, X., Zhou, Y. H., Li, Y., Wen, J., Xia, Y. K., Wang, X. R., Ji, C. B., & Guo, X. (2018). Change in circulating microRNA profile of obese children indicates future risk of adult diabetes. Metabolism, 78, 95-105.

[3]

Yaribeygi, H., Katsiki, N., Behnam, B., Iranpanah, H., & Sahebkar, A. (2018). MicroRNAs and type 2 diabetes mellitus: Molecular mechanisms and the effect of antidiabetic drug treatment. Metabolism, 87, 48-55.

[4]

Agbu, P., & Carthew, R. W. (2021). MicroRNA-mediated regulation of glucose and lipid metabolism. Nature Reviews Molecular Cell Biology, 22(6), 425-438.

[5]

Desgagné V., Bouchard, L., & Guérin, R. (2017). microRNAs in lipoprotein and lipid metabolism: from biological function to clinical application. Clinical Chemistry and Laboratory Medicine, 55(5), 667-686.

[6]

Cheng, Z. R., Hou, G. J., & Shen, N. (2023). Evolving understandings for the roles of non-coding RNAs in autoimmunity and autoimmune disease. Journal of Autoimmunity, 137, 102948.

[7]

Sassmann-Schweda, A., Singh, P., Tang, C., Wietelmann, A., Wettschureck, N., & Offermanns, S. (2016). Increased apoptosis and browning of TAK1-deficient adipocytes protects against obesity. Jci Insight, 1(7).

[8]

Niemann, B., Haufs-Brusberg, S., Puetz, L., Feickert, M., Jaeckstein, M. Y., Hoffmann, A., Zurkovic, J., Heine, M., Trautmann, E. M., Müller, C. E., Tönjes, A., Schlein, C., Jafari, A., Eltzschig, H. K., Gnad, T., Blüher, M., Krahmer, N., Kovacs, P., Heeren, J., & Pfeifer, A. (2022). Apoptotic brown adipocytes enhance energy expenditure via extracellular inosine. Nature, 609(7926), 361-368.

[9]

Jin, Y. Y., Wang, J., Zhang, M., Zhang, S. H., Lei, C. Z., Chen, H., Guo, W., & Lan, X. Y. (2019). Role of bta-miR-204 in the regulation of adipocyte proliferation, differentiation, and apoptosis. Journal of Cellular Physiology, 234(7), 11037-11046.

[10]

Nunes, A. D. C., Weigl, M., Schneider, A., Noureddine, S., Yu, L., Lahde, C., Saccon, T. D., Mitra, K., Beltran, E., Grillari, J., Kirkland, J. L., Tchkonia, T., Robbins, P. D., & Masternak, M. M. (2022). miR-146a-5p modulates cellular senescence and apoptosis in visceral adipose tissue of long-lived Ames dwarf mice and in cultured pre-adipocytes. Geroscience, 44(1), 503-518.

[11]

Wu, G. C., Zheng, H. T., Xu, J., Guo, Y. W., Zheng, G. B., Ma, C., Hao, S. L., Liu, X. C., Chen, H. J., Wei, S. J., Song, X. C., & Wang, X. J. (2022). miR-429 suppresses cell growth and induces apoptosis of human thyroid cancer cell by targeting ZEB1 (Expression of Concern of Vol 47, Pg 548, 2019). Artificial Cells, Nanomedicine, and Biotechnology, 50(1), 227.

[12]

Cavallari, I., Ciccarese, F., Sharova, E., Urso, L., Raimondi, V., Silic-Benussi, M., D’Agostino, D. M., & Ciminale, V. (2021). The miR-200 family of microRNAs: Fine tuners of epithelial-mesenchymal transition and circulating cancer biomarkers. Cancers, 13(23), 5874.

[13]

Wang, C., Ju, H., Shen, C. Y., & Tong, Z. S. (2015). miR-429 mediates δ-tocotrienol-induced apoptosis in triple-negative breast cancer cells by targeting XIAP. International Journal of Clinical and Experimental Medicine, 8(9), 15648-15656.

[14]

Yang, C. X., Zhang, X. C., Yin, H. Q., Du, Z. Q., & Yang, Z. (2020). MiR-429/200a/200b negatively regulate Notch1 signaling pathway to suppress CoCl-induced apoptosis in PC12 cells. Toxicology in Vitro, 65, 104787.

[15]

Chen, F. F., Xiong, Y., Peng, Y., Gao, Y., Qin, J., Chu, G. Y., Pang, W. J., & Yang, G. S. (2017). miR-425-5p inhibits differentiation and proliferation in porcine intramuscular preadipocytes. International Journal of Molecular Sciences, 18(10), 2101.

[16]

Peng, Y., Chen, F. F., Ge, J., Zhu, J. Y., Shi, X. E., Li, X., Yu, T. Y., Chu, G. Y., & Yang, G. S. (2016). miR-429 inhibits differentiation and promotes proliferation in porcine preadipocytes. International Journal of Molecular Sciences, 17(12), 2047.

[17]

Budi, H. S., Anitasari, S., Ulfa, N. M., Setiabudi, M. A., Ramasamy, R., Wu, C. Z., & Shen, Y. K. (2022). Palmitic acid of Musa Paradisiaca induces apoptosis through caspase-3 in human oral squamous cell carcinoma. Eur Rev Med Pharmaco, 26(19), 7099-7114.

[18]

Yang, D., Xie, J., Liang, X. C., Cui, Y. Z., & Wu, Q. L. (2022). The synergistic effect of palmitic acid and glucose on inducing endoplasmic reticulum stress-associated apoptosis in rat Schwann cells. Eur Rev Med Pharmaco, 26(1), 148-157.

[19]

Okamura, T., Hashimoto, Y., Mori, J., Yamaguchi, M., Majima, S., Senmaru, T., Ushigome, E., Nakanishi, N., Asano, M., Yamazaki, M., Takakuwa, H., Satoh, T., Akira, S., Hamaguchi, M., & Fukui, M. (2021). ILC2s improve glucose metabolism through the control of saturated fatty acid absorption within visceral fat. Frontiers in Immunology, 12.

[20]

Cao, L. L., Zhou, S. M., Qiu, X. S., & Qiu, S. (2022). Trehalose improves palmitic acid-induced apoptosis of osteoblasts by regulating SIRT3-medicated autophagy via the AMPK/mTOR/ULK1 pathway. The FASEB Journal, 36(9).

[21]

Wang, S. Q., Wang, Y., Chen, Y. B., Li, Y. Q., Du, X., Li, Y. X., & Li, Q. F. (2023). MEIS1 is a common transcription repressor of the miR-23a and NORHA Axis in granulosa cells. International Journal of Molecular Sciences, 24(4), 3589.

[22]

Abolfathi, H., Arabi, M., & Sheikhpour, M. (2023). A literature review of microRNA and gene signaling pathways involved in the apoptosis pathway of lung cancer. Respiratory Research, 24(1), 55.

[23]

Wu, G. C., Zheng, H. T., Xu, J., Guo, Y. W., Zheng, G. B., Ma, C., Hao, S. L., Liu, X. C., Chen, H. J., Wei, S. J., Song, X., & Wang, X. (2019). miR-429 suppresses cell growth and induces apoptosis of human thyroid cancer cell by targeting ZEB1 (Publication with Expression of Concern. See vol. 50, pg. 227, 2022) (Publication with Expression of Concern. See vol. 50, pg. 227, 2022). Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 548-554.

[24]

Gao, H. J., & Liu, C. (2014). miR-429 represses cell proliferation and induces apoptosis in HBV-related HCC. Biomedicine & Pharmacotherapy, 68(8), 943-949.

[25]

Wang, Y. Y., Li, M., Zang, W. Q., Ma, Y. Y., Wang, N., Li, P., Wang, T., & Zhao, G. Q. (2013). MiR-429 up-regulation induces apoptosis and suppresses invasion by targeting Bcl-2 and SP-1 in esophageal carcinoma. Cellular Oncology, 36(5), 385-394.

[26]

Li, G., Wang, K., Wang, J. S., Qin, S. D., Sun, X., & Ren, H. (2019). miR-497-5p inhibits tumor cell growth and invasion by targeting SOX5 in non-small-cell lung cancer. Journal of Cellular Biochemistry, 120(6), 10587-10595.

[27]

Yuan, W. M., Fan, Y. G., Cui, M., Luo, T., Wang, Y. E., Shu, Z. J., Zhao, J., Zheng, J., & Zeng, Y. (2021). SOX5 regulates cell proliferation, apoptosis, migration and invasion in KSHV-infected cells. Virologica Sinica, 36(3), 449-457.

[28]

Tang, Q., Zhang, Y. H., Yue, L. X., Ren, H. Y., & Pan, C. A. Y. (2022). Ssc-MiR-21-5p and Ssc-MiR-615 regulates the proliferation and apoptosis of Leydig cells by targeting SOX5. Cells-Basel, 11(14), 2253.

[29]

Zhang, W., Wu, Y. Q., Chen, H., Yu, D., Zhao, J. F., & Chen, J. (2021). Neuroprotective effects of SOX5 against ischemic stroke by regulating VEGF/PI3K/AKT pathway. Gene, 767, 145148.

[30]

Liang, J. Y., Zhang, Y. T., Shen, L., Lin, H. T., Zhan, S. K., Xie, M. X., Liang, S. W., Xian, M. H., Wang, S. M., & Wang, S. (2022). Cyclo-(Phe-Tyr) as a novel cyclic dipeptide compound alleviates ischemic/reperfusion brain injury via JUNB/JNK/NF-κB and SOX5/PI3K/AKT pathways. Pharmacological Research, 180, 106230.

RIGHTS & PERMISSIONS

2024 The Authors. Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

182

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/