Developing a liquid capture chip to accelerate the genetic progress of cattle
Yan Chen, Yingwei Guo, Fei Ge, Han Gao, Jinghang Zhou, Xiaonv Wu, Changsong Qian, Zhiquan Wang, Zezhao Wang, Bo Zhu, Lingyang Xu, Xue Gao, Lupei Zhang, Huijiang Gao, Junya Li
Developing a liquid capture chip to accelerate the genetic progress of cattle
Large-scale genotyping at a low cost is crucial for molecular breeding of livestock. In this study, the Cattle110K capture chip was developed, based on the genotyping by target sequencing system. The chip panel included 112,180 single necleotide polymorphisms (SNPs), from potential functional regions screened by genome-wide associated study, BayesB, expression quantitative trait loci-mapping, ATAC-seq, and reported functional markers. All the SNPs on the panel were distributed evenly on the cattle genome, with more than 99% of the markers having a minor allele frequency greater than 0.05. Assessment results indicated that a total of 1.2 M high-quality SNPs were identified in the 110 K regions, averaging approximately 10 SNPs per target sequence. The genotype consistency for the repetitive samples using the Cattle110K liquid chip was 99.21% while the concordance between the Illumina BovineHD BeadChip and this chip averaged 98.17%. A significant association signal for slaughter weight and carcass length was identified on 37.3–41.5 Mb of chromosome 6, pinpointing the NCAPG-LCORL locus. This locus has previously been associated with meat and carcass traits in cattle. Additionally, novel candidate regions were identified around 3.4 Mb of chromosome 13 and 73.5 Mb of chromosome 8, significantly correlated with hip height and marbling score, respectively. We compared the accuracy of genomic estimated breeding values between the Illumina BovineHD BeadChip and this chip. The results demonstrated that the Cattle110K capture chip had a comparable ability in genomic prediction to the Illumina BovineHD BeadChip. Advances in using the cost-effective liquid capture chip are expected to accelerate the genetic progress of cattle in the coming years.
cattle breeding / chip design / GBTS / GS / GWAS
/
〈 | 〉 |