Roles of sphingosine-1-phosphate in follicle development and oocyte maturation

Xiaoqiong Hao , Meijia Zhang

Animal Research and One Health ›› 2024, Vol. 2 ›› Issue (3) : 314 -322.

PDF
Animal Research and One Health ›› 2024, Vol. 2 ›› Issue (3) : 314 -322. DOI: 10.1002/aro2.53
REVIEW

Roles of sphingosine-1-phosphate in follicle development and oocyte maturation

Author information +
History +
PDF

Abstract

Sphingosine-1-phosphate (S1P), a lipid messenger, propagates its signals by interacting with its intracellular targets or is transported to autocrine/paracrine to activate its cell surface receptors. In the female reproductive system, the homeostasis of S1P plays an important role in ovarian follicular development. Our recent studies show that S1P emerges as a functional mediator of LH-EGFR signaling from cumulus cells to oocytes: elevating calcium levels in cumulus cells to induce oocyte meiotic maturation, and activating Akt/mTOR cascade reaction to promote oocyte developmental competence. Thus, S1P might be applied to promote oocyte maturation in animals and humans.

Keywords

cumulus cells / follicular development / oocyte maturation / S1P

Cite this article

Download citation ▾
Xiaoqiong Hao, Meijia Zhang. Roles of sphingosine-1-phosphate in follicle development and oocyte maturation. Animal Research and One Health, 2024, 2(3): 314-322 DOI:10.1002/aro2.53

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Thomas, S., Samuel, S. V., Hoch, A., Syphurs, C., & Diray-Arce, J. (2023). The implication of sphingolipids in viral infections. International Journal of Molecular Sciences, 24(24), 17303.

[2]

Burtscher, J., Pepe, G., Maharjan, N., Riguet, N., Di Pardo, A., Maglione, V., & Millet, G. P. (2023). Sphingolipids and impaired hypoxic stress responses in Huntington disease. Progress in Lipid Research, 90, 101224.

[3]

Fang, Z., Pyne, S., & Pyne, N. J. (2019). Ceramide and sphingosine 1-phosphate in adipose dysfunction. Progress in Lipid Research, 74, 145–159.

[4]

Cirillo, F., Piccoli, M., Ghiroldi, A., Monasky, M. M., Rota, P., La Rocca, P., Tarantino, A., D’Imperio, S., Signorelli, P., Pappone, C., & Anastasia, L. (2021). The antithetic role of ceramide and sphingosine-1-phosphate in cardiac dysfunction. Journal of Cellular Physiology, 236(7), 4857–4873.

[5]

Hobson, J. P., Rosenfeldt, H. M., Barak, L. S., Olivera, A., Poulton, S., Caron, M. G., Milstien, S., & Spiegel, S. (2001). Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science, 291(5509), 1800–1803.

[6]

Hernández-Coronado, C. G., Guzmán, A., Rodríguez, A., Mondragón, J. A., Romano, M. C., Gutiérrez, C. G., & Rosales-Torres, A. M. (2016). Sphingosine-1-phosphate, regulated by FSH and VEGF, stimulates granulosa cell proliferation. General and Comparative Endocrinology, 236, 1–8.

[7]

Matovelo, S. A., Zhang, L., Mohamed, N. N. I., Kajimoto, T., Ijuin, T., Okada, T., & Nakamura, S. I. (2020). Involvement of receptor-mediated S1P signaling in EGF-induced Macropinocytosis in COS7 cells. Kobe Journal of Medical Sciences, 66(3), E94–E101.

[8]

Fu, P., Ebenezer, D. L., Berdyshev, E. V., Bronova, I. A., Shaaya, M., Harijith, A., & Natarajan, V. (2016). Role of sphingosine kinase 1 and S1P transporter Spns2 in HGF-mediated Lamellipodia formation in lung endothelium. Journal of Biological Chemistry, 291(53), 27187–27203.

[9]

Bonica, J., Mao, C., Obeid, L. M., & Hannun, Y. A. (2020). Transcriptional regulation of sphingosine kinase 1. Cells, 9(11), 2437.

[10]

Pyne, S., Adams, D. R., & Pyne, N. J. (2016). Sphingosine 1-phosphate and sphingosine kinases in health and disease: Recent advances. Progress in Lipid Research, 62, 93–106.

[11]

Maceyka, M., & Spiegel, S. (2014). Sphingolipid metabolites in inflammatory disease. Nature, 510(7503), 58–67.

[12]

Green, C. D., Maceyka, M., Cowart, L. A., & Spiegel, S. (2021). Sphingolipids in metabolic disease: The good, the bad, and the unknown. Cell Metabolism, 33(7), 1293–1306.

[13]

Spiegel, S., & Milstien, S. (2011). The outs and the ins of sphingosine-1-phosphate in immunity. Nature Reviews Immunology, 11(6), 403–415.

[14]

Salmanzadeh, A., Elvington, E. S., Roberts, P. C., Schmelz, E. M., & Davalos, R. V. (2013). Sphingolipid metabolites modulate dielectric characteristics of cells in a mouse ovarian cancer progression model. Integrative Biology, 5(6), 843–852.

[15]

Magaye, R. R., Savira, F., Hua, Y., Xiong, X., Huang, L., Reid, C., Flynn, B. L., Kaye, D., Liew, D., & Wang, B. H. (2021). Attenuating PI3K/Akt-mTOR pathway reduces dihydrosphingosine 1 phosphate mediated collagen synthesis and hypertrophy in primary cardiac cells. International Journal of Biochemistry Cell Biology, 134, 105952.

[16]

Chi, F., Sharpley, M. S., Nagaraj, R., Roy, S. S., & Banerjee, U. (2020). Glycolysis-independent glucose metabolism distinguishes TE from ICM fate during mammalian embryogenesis. Developmental Cell, 3(1), 9–26.e4.

[17]

Zheng, X., Li, W., Ren, L., Liu, J., Pang, X., Chen, X., Kang, D., Wang, J., & Du, G. (2019). The sphingosine kinase-1/sphingosine-1-phosphate axis in cancer: Potential target for anticancer therapy. Pharmacology & Therapeutics, 195, 85–99.

[18]

Hernández-Coronado, C. G., Guzmán, A., Castillo-Juárez, H., Zamora-Gutiérrez, D., & Rosales-Torres, A. M. (2019). Sphingosine-1-phosphate (S1P) in ovarian physiology and disease. Annales d’Endocrinologie, 80(5–6), 263–272.

[19]

Gomez-Larrauri, A., Presa, N., Dominguez-Herrera, A., Ouro, A., Trueba, M., & Gomez-Muñoz, A. (2020). Role of bioactive sphingolipids in physiology and pathology. Essays in Biochemistry, 64(3), 579–589.

[20]

Xia, P., Wang, L., Moretti, P. A., Albanese, N., Chai, F., Pitson, S. M., D’Andrea, R. J., Gamble, J. R., & Vadas, M. A. (2002). Sphingosine kinase interacts with TRAF2 and dissects tumor necrosis factor-alpha signaling. Journal of Biological Chemistry, 277(10), 7996–8003.

[21]

Yuan, F., Hao, X., Cui, Y., Huang, F., Zhang, X., Sun, Y., Hao, T., Wang, Z., Xia, W., Su, Y., & Zhang, M. (2022). SphK-produced S1P in somatic cells is indispensable for LH-EGFR signaling-induced mouse oocyte maturation. Cell Death & Disease, 13(11), 963.

[22]

Jozefczuk, E., Guzik, T. J., & Siedlinski, M. (2020). Significance of sphingosine-1-phosphate in cardiovascular physiology and pathology. Pharmacological Research, 156, 104793.

[23]

Hafizi, R., Imeri, F., Stepanovska Tanturovska, B., Manaila, R., Schwalm, S., Trautmann, S., Wenger, R. H., Pfeilschifter, J., & Huwiler, A. (2022). Sphk1 and Sphk2 differentially regulate erythropoietin synthesis in mouse renal interstitial fibroblast-like cells. International Journal of Molecular Sciences, 23(11), 5882.

[24]

Hait, N. C., Maiti, A., Xu, P., Qi, Q., Kawaguchi, T., Okano, M., Takabe, K., Yan, L., & Luo, C. (2020). Regulation of hypoxia-inducible factor functions in the nucleus by sphingosine-1-phosphate. FASEB Journal, 34(3), 4293–4310.

[25]

Mizugishi, K., Yamashita, T., Olivera, A., Miller, G. F., Spiegel, S., & Proia, R. L. (2005). Essential role for sphingosine kinases in neural and vascular development. Molecular and Cellular Biology, 25(24), 11113–11121.

[26]

Li, L., Zheng, X., Li, S., Wang, G., Lan, H., & Zheng, X. (2023). IP3R1 regulates calcium balance in porcine oocyte maturation and early embryonic development. Theriogenology, 209, 151–161.

[27]

Li, J., Huang, Y., Zhang, Y., Liu, P., Liu, M., Zhang, M., & Wu, R. (2023). S1P/S1PR signaling pathway advancements in autoimmune diseases. Biomolecules & Biomedicine, 23(6), 922–935.

[28]

Okundaye, B., Biyani, N., Moitra, S., & Zhang, K. (2022). The Golgi-localized sphingosine-1-phosphate phosphatase is indispensable for Leishmania major. Scientific Reports, 12(1), 16064.

[29]

Spiegel, S., & Milstien, S. (2003). Sphingosine-1-phosphate: An enigmatic signalling lipid. Nature Reviews Molecular Cell Biology, 4(5), 397–407.

[30]

Mandala, S. M. (2001). Sphingosine-1-phosphate phosphatases. Prostaglandins Other Lipid Mediators, 64(1–4), 143–156.

[31]

Kang, X., Li, X., & Li, Y. (2022). Sevoflurane suppresses the proliferation, migration and invasion of colorectal cancer through regulating Circ_0000423/miR-525-5p/SGPP1 network. Cellular and Molecular Bioengineering, 15(2), 219–230.

[32]

Alam, S., Afsar, S. Y., Wolter, M. A., Volk, L. M., Mitroi, D. N., Meyer Zu Heringdorf, D., & van Echten-Deckert, G. (2023). S1P lyase deficiency in the brain promotes astrogliosis and NLRP3 inflammasome activation via purinergic signaling. Cells, 12(14), 1844.

[33]

Zhang, H. H., Wang, L., Zhang, W., & Wan, Z. (2022). The role of sphingomyelin metabolism in the protection of rat brain microvascular endothelial cells by mild hypothermia. Neurocritical Care, 36(2), 546–559.

[34]

Zhang, C., Wang, M., Li, Y., & Zhang, Y. (2022). Profiling and functional characterization of maternal mRNA translation during mouse maternal-to-zygotic transition. Science Advances, 8(5), eabj3967.

[35]

Linhares, N. D., Arantes, R. R., Araujo, S. A., & Pena, S. D. J. (2018). Nephrotic syndrome and adrenal insufficiency caused by a variant in SGPL1. Clinical Kidney Journal, 11(4), 462–467.

[36]

Janecke, A. R., Xu, R., Steichen-Gersdorf, E., Waldegger, S., Entenmann, A., Giner, T., Krainer, I., Huber, L. A., Hess, M. W., Frishberg, Y., Barash, H., Tzur, S., Schreyer-Shafir, N., Sukenik-Halevy, R., Zehavi, T., Raas-Rothschild, A., Mao, C., & Müller, T. (2017). Deficiency of the sphingosine-1-phosphate lyase SGPL1 is associated with congenital nephrotic syndrome and congenital adrenal calcifications. Human Mutation, 38(4), 365–372.

[37]

Mitroi, D. N., Karunakaran, I., Gräler, M., Saba, J. D., Ehninger, D., Ledesma, M. D., & van Echten-Deckert, G. (2017). SGPL1 (sphingosine phosphate lyase 1) modulates neuronal autophagy via phosphatidylethanolamine production. Autophagy, 13(5), 885–899.

[38]

Piprek, R. P., Kolasa, M., Podkowa, D., Kloc, M., & Kubiak, J. Z. (2019). Tissue-specific knockout of E-cadherin (Cdh1) in developing mouse gonads causes germ cells loss. Reproduction, 158(2), 147–157.

[39]

Asaduzzaman, M., Rodgers, R. J., & Young, F. M. (2020). Quantification of viable granulosa cells in murine ovarian follicles. Biotechnic & Histochemistry, 95(7), 540–554.

[40]

Wang, F., Tian, Y., Huang, L., Qin, T., Ma, W., Pei, C., Xu, B., Han, H., Liu, X., Pan, P., Yu, X., Chang, Q., Wang, Y., Zhang, S., & Pei, X. (2023). Roles of follicle stimulating hormone and sphingosine 1-phosphate co-administered in the process in mouse ovarian vitrification and transplantation. Journal of Ovarian Research, 16(1), 173.

[41]

Hancke, K., Strauch, O., Kissel, C., Göbel, H., Schäfer, W., & Denschlag, D. (2007). Sphingosine 1-phosphate protects ovaries from chemotherapy-induced damage in vivo. Fertility and Sterility, 87(1), 172–177.

[42]

Jurisicova, A., Lee, H. J., D’Estaing, S. G., Tilly, J., & Perez, G. I. (2006). Molecular requirements for doxorubicin-mediated death in murine oocytes. Cell Death and Differentiation, 13(9), 1466–1474.

[43]

Kaya, H., Desdicioglu, R., Sezik, M., Ulukaya, E., Ozkaya, O., Yilmaztepe, A., & Demirci, M. (2008). Does sphingosine-1-phosphate have a protective effect on cyclophosphamide- and irradiation-induced ovarian damage in the rat model? Fertility and Sterility, 89(3), 732–735.

[44]

Zelinski, M. B., Murphy, M. K., Lawson, M. S., Jurisicova, A., Pau, K. Y., Toscano, N. P., Jacob, D. S., Fanton, J. K., Casper, R. F., Dertinger, S. D., & Tilly, J. L. (2011). In vivo delivery of FTY720 prevents radiation-induced ovarian failure and infertility in adult female nonhuman primates. Fertility and Sterility, 95(4), 1440–1445. e1–7.

[45]

Wang, P., Yuan, Y., Lin, W., Zhong, H., Xu, K., & Qi, X. (2019). Roles of sphingosine-1-phosphate signaling in cancer. Cancer Cell International, 19(1), 295.

[46]

Wang, H., Cai, H., Wang, X., Zhang, M., Liu, B., Chen, Z., Yang, T., Fang, J., Zhang, Y., Liu, W., Han, J., Guo, Q., Zhang, H., Wang, H., Xia, G., & Wang, C. (2019). HDAC3 maintains oocyte meiosis arrest by repressing amphiregulin expression before the LH surge. Nature Communications, 10(1), 5719.

[47]

Chen, T., Song, P., He, M., Rui, S., Duan, X., Ma, Y., Armstrong, D. G., & Deng, W. (2023). Sphingosine-1-phosphate derived from PRP-Exos promotes angiogenesis in diabetic wound healing via the S1PR1/AKT/FN1 signalling pathway. Burns Trauma, 11, tkad003.

[48]

Yuan, F., Wang, Z., Sun, Y., Wei, H., Cui, Y., Wu, Z., Zhang, C., Xie, K. P., Wang, F., & Zhang, M. (2021). Sgpl1 deletion elevates S1P levels, contributing to NPR2 inactivity and p21 expression that block germ cell development. Cell Death & Disease, 12(6), 574.

[49]

Schmahl, J., Rizzolo, K., & Soriano, P. (2008). The PDGF signaling pathway controls multiple steroid-producing lineages. Genes Development, 22(23), 3255–3267.

[50]

Hao, X., Wang, Y., Kong, N., Zhang, Y., Zhao, Y., Xia, G., & Zhang, M. (2016). Epidermal growth factor-mobilized intracellular calcium of cumulus cells decreases natriuretic peptide receptor 2 affinity for natriuretic peptide type C and induces oocyte meiotic resumption in the mouse. Biology of Reproduction, 95(2), 45.

[51]

Tamura, N., Doolittle, L. K., Hammer, R. E., Shelton, J. M., Richardson, J. A., & Garbers, D. L. (2004). Critical roles of the guanylyl cyclase B receptor in endochondral ossification and development of female reproductive organs. Proceedings of the National Academy of Science of the United States of America, 101(49), 17300–17305.

[52]

Sato, Y., Cheng, Y., Kawamura, K., Takae, S., & Hsueh, A. J. (2012). C-type natriuretic peptide stimulates ovarian follicle development. Molecular Endocrinology, 26(7), 1158–1166.

[53]

Yang, L., Lei, L., Zhao, Q., Gong, Y., Guan, G., & Huang, S. (2019). C-type Natriuretic peptide/natriuretic peptide receptor 2 is involved in cell proliferation and testosterone production in mouse Leydig cells. World Journal Mens Health, 37(2), 186–198.

[54]

Peake, N. J., Hobbs, A. J., Pingguan-Murphy, B., Salter, D. M., Berenbaum, F., & Chowdhury, T. T. (2014). Role of C-type natriuretic peptide signalling in maintaining cartilage and bone function. Osteoarthritis and Cartilage, 22(11), 1800–1807.

[55]

Giepmans, B. N., Verlaan, I., Hengeveld, T., Janssen, H., Calafat, J., Falk, M. M., & Moolenaar, W. H. (2001). Gap junction protein connexin-43 interacts directly with microtubules. Current Biology, 11(17), 1364–1368.

[56]

Zhang, T., Zhang, C., Fan, X., Li, R., & Zhang, J. (2017). Effect of C-type natriuretic peptide pretreatment on in vitro bovine oocyte maturation. Vitro Cellular and Developmental Biology-Animal, 53(3), 199–206.

[57]

Zhang, M., Su, Y. Q., Sugiura, K., Xia, G., & Eppig, J. J. (2010). Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science, 330(6002), 366–369.

[58]

Shuhaibar, L. C., Egbert, J. R., Norris, R. P., Lampe, P. D., Nikolaev, V. O., Thunemann, M., Wen, L., Feil, R., & Jaffe, L. A. (2015). Intercellular signaling via cyclic GMP diffusion through gap junctions restarts meiosis in mouse ovarian follicles. Proceedings of the National Academy of Sciences of the United States of America, 112(17), 5527–5532.

[59]

Xi, G., An, L., Wang, W., Hao, J., Yang, Q., Ma, L., Lu, J., Wang, Y., Wang, W., Xhao, W., Liu, J., Yang, M., Wang, X., Zhang, Z., Zhang, C., Chu, M., Yue, Y., Yao, F., Zhang, M., & Tian, J. (2021). The mRNA-destabilizing protein Tristetraprolin targets "meiosis arrester" Nppc mRNA in mammalian preovulatory follicles. Proceedings of the National Academy of Sciences of the United States of America, 118(22), e2018345118.

[60]

Egbert, J. R., Yee, S. P., & Jaffe, L. A. (2018). Luteinizing hormone signaling phosphorylates and activates the cyclic GMP phosphodiesterase PDE5 in mouse ovarian follicles, contributing an additional component to the hormonally induced decrease in cyclic GMP that reinitiates meiosis. Developmental Biology, 435(1), 6–14.

[61]

Wang, Y., Kong, N., Li, N., Hao, X., Wei, K., Xiang, X., Xia, G., & Zhang, M. (2013). Epidermal growth factor receptor signaling-dependent calcium elevation in cumulus cells is required for NPR2 inhibition and meiotic resumption in mouse oocytes. Endocrinology, 154(9), 3401–3409.

[62]

He, G. F., Yang, L. L., Luo, S. M., Ma, J. Y., Ge, Z. J., Shen, W., Yin, S., & Sun, Q. Y. (2017). The role of L-type calcium channels in mouse oocyte maturation, activation and early embryonic development. Theriogenology, 102, 67–74.

[63]

Domínguez, A., Salazar, Z., Betancourt, M., Ducolomb, Y., Casas, E., Fernández, F., Bahena, I., Salomón, A., Teteltitla, M., Martínez, R., Chaparro, A., Cuapio, P., Salazar-López, C., & Bonilla, E. (2019). Effect of perfluorodecanoic acid on pig oocyte viability, intracellular calcium levels and gap junction intercellular communication during oocyte maturation in vitro. Toxicology in Vitro, 58, 224–229.

[64]

Fonseca, E., Mesquita, P., Marques, C. C., Baptista, M. C., Pimenta, J., Matos, J. E., Soveral, G., & Pereira, R. M. L. N. (2020). Modulation of P2Y2 receptors in bovine cumulus oocyte complexes: Effects on intracellular calcium, zona hardening and developmental competence. Purinergic Signalling, 16(1), 85–96.

[65]

Pulli, I., Asghar, M. Y., Kemppainen, K., & Törnquist, K. (2018). Sphingolipid-mediated calcium signaling and its pathological effects. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1865(11 Pt B), 1668–1677.

[66]

Pulli, I., Löf, C., Blom, T., Asghar, M. Y., Lassila, T., Bäck, N., Lin, K. L., Nyström, J. H., Kemppainen, K., Toivola, D. M., Dufour, E., Sanz, A., Cooper, H. M., Parys, J. B., & Törnquist, K. (2019). Sphingosine kinase 1 overexpression induces MFN2 fragmentation and alters mitochondrial matrix Ca2+ handling in HeLa cells. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1866(9), 1475–1486.

[67]

Shirakawa, H., Katsumoto, R., Iida, S., Miyake, T., Higuchi, T., Nagashima, T., Nagayasu, K., Nakagawa, T., & Kaneko, S. (2017). Sphingosine-1-phosphate induces Ca2+ signaling and CXCL1 release via TRPC6 channel in astrocytes. Glia, 65(6), 1005–1016.

[68]

Kono, M., Mi, Y., Liu, Y., Sasaki, T., Allende, M. L., Wu, Y. P., Yamashita, T., & Proia, R. L. (2004). The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. Journal of Biological Chemistry, 279(28), 29367–29373.

[69]

Duan, M., Gao, P., Chen, S. X., Novak, P., Yin, K., & Zhu, X. (2022). Sphingosine-1-phosphate in mitochondrial function and metabolic diseases. Obesity Reviews, 23(6), e13426.

[70]

Qi, Y., Li, J. J., Di, X. H., Zhang, Y., Chen, J. L., Wu, Z. X., Man, Z. Y., Bai, R. Y., Lu, F., Tong, J., Liu, X. L., Deng, X. L., Zhang, J., Zhang, X., Zhang, Y., & Xie, W. (2021). Excess sarcoplasmic reticulum-mitochondria calcium transport induced by Sphingosine-1-phosphate contributes to cardiomyocyte hypertrophy. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1868(5), 118970.

[71]

Tarazón, E., Gil-Cayuela, C., Manzanares, M. G., Roca, M., Lago, F., González-Juanatey, J. R., Sánchez-Lacuesta, E., Martínez-Dolz, L., Portolés, M., & Roselló-Lletí E. (2019). Circulating sphingosine-1-phosphate as A non-invasive biomarker of heart transplant rejection. Scientific Reports, 9(1), 13880.

[72]

Badone, B., Ronchi, C., Lodola, F., Knaust, A. E., Hansen, A., Eschenhagen, T., & Zaza, A. (2021). Characterization of the PLN p. Arg14del Mutation in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. International Journal of Molecular Sciences, 22(24), 13500.

[73]

Luo, W., Grupp, I. L., Harrer, J., Ponniah, S., Grupp, G., Duffy, J. J., Doetschman, T., & Kranias, E. G. (1994). Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circulation Research, 75(3), 401–409.

[74]

Richani, D., Dunning, K. R., Thompson, J. G., & Gilchrist, R. B. (2021). Metabolic co-dependence of the oocyte and cumulus cells: Essential role in determining oocyte developmental competence. Human Reproduction Update, 27(1), 27–47.

[75]

Jee, B. C., Jo, J. W., Suh, C. S., & Kim, S. H. (2011). Dose-dependent effect of sphingosine-1-phosphate in mouse oocyte maturation medium on subsequent embryo development. Gynecologic and Obstetric Investigation, 72(1), 32–36.

[76]

Roth, Z., & Hansen, P. J. (2005). Disruption of nuclear maturation and rearrangement of cytoskeletal elements in bovine oocytes exposed to heat shock during maturation. Reproduction, 129(2), 235–244.

[77]

Roth, Z., & Hansen, P. J. (2004). Sphingosine 1-phosphate protects bovine oocytes from heat shock during maturation. Biology of Reproduction, 71(6), 2072–2078.

[78]

Guo, L., Geng, X., Ma, L., Luo, C., Zeng, W., Ou, X., Chen, L., Quan, S., & Li, H. (2013). Sphingosine-1-phosphate inhibits ceramide-induced apoptosis during murine preimplantation embryonic development. Theriogenology, 80(3), 206–211.

[79]

Chen, J., Torcia, S., Xie, F., Lin, C. J., Cakmak, H., Franciosi, F., Horner, K., Onodera, C., Song, J. S., Cedars, M. I., Ramalho-Santos, M., & Conti, M. (2013). Somatic cells regulate maternal mRNA translation and developmental competence of mouse oocytes. Nature Cell Biology, 15(12), 1415–1423.

[80]

Susor, A., Jansova, D., Cerna, R., Danylevska, A., Anger, M., Toralova, T., Malik, R., Supolikova, J., Cook, M. S., Oh, J. S., & Kubelka, M. (2015). Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR-eIF4F pathway. Nature Communications, 6(1), 6078.

[81]

Chen, J., Melton, C., Suh, N., Oh, J. S., Horner, K., Xie, F., Sette, C., Blelloch, R., & Conti, M. (2011). Genome-wide analysis of translation reveals a critical role for deleted in azoospermia-like (Dazl) at the oocyte-to-zygote transition. Genes & Development, 25(7), 755–766.

[82]

Notario, L., Alari-Pahissa, E., Albentosa, A., Leiva, M., Sabio, G., & Lauzurica, P. (2018). Anti-CD69 therapy induces rapid mobilization and high proliferation of HSPCs through S1P and mTOR. Leukemia, 32(6), 1445–1457.

[83]

McGinley, M. P., & Cohen, J. A. (2021). Sphingosine 1-phosphate receptor modulators in multiple sclerosis and other conditions. Lancet, 398(10306), 1184–1194.

[84]

Hannoun, A., Ghaziri, G., Abu Musa, A., Zreik, T. G., Hajameh, F., & Awwad, J. (2010). Addition of sphingosine-1-phosphate to human oocyte culture medium decreases embryo fragmentation. Reprod Biomed Online, 20(3): 328-334.

[85]

von Otte, S., Paletta, J. R., Becker, S., König, S., Fobker, M., Greb, R. R., Kiesel, L., Assmann, G., Diedrich, K., & Nofer, J. R. (2006). Follicular fluid high density lipoprotein-associated sphingosine 1-phosphate is a novel mediator of ovarian angiogenesis. Journal of Biological Chemistry, 281(9), 5398–5405.

[86]

Li, F., Turan, V., Lierman, S., Cuvelier, C., & De Sutter, P. (2014). Kutluk Oktay sphingosine-1-phosphate prevents chemotherapy-induced human primordial follicle death. Human Reproduction, 29(1), 107–113.

[87]

Soleimani, R., Heytens, E., & Oktay, K. (2011). Enhancement of neoangiogenesis and follicle survival by sphingosine-1-phosphate in human ovarian tissue xenotransplants. PLoS One, 6(4), e19475.

RIGHTS & PERMISSIONS

2024 The Authors. Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/