Comprehensive analysis of the circular RNA expression profile and circRNA-miRNA-mRNA network in the goat skin with divergent wool curvature

Yingxiao Su , Zhanqiang Zhao , Zhanfa Liu , Xiaobo Li , Qian Chen , Yabin Pu , Lin Jiang , Xiaohong He , Yuehui Ma , Qianjun Zhao

Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (3) : 316 -328.

PDF
Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (3) : 316 -328. DOI: 10.1002/aro2.41
ARTICLE

Comprehensive analysis of the circular RNA expression profile and circRNA-miRNA-mRNA network in the goat skin with divergent wool curvature

Author information +
History +
PDF

Abstract

Wool curvature is one of the most valuable characteristics of Zhongwei goat fur. As the goats grow, the curvature progressively diminishes, which has a substantial impact on the quality and market value of wool. Circular RNAs (circRNAs) are a class of noncoding RNA and play vital roles in animal growth and development. However, the expression and function of circRNAs in the wool curvature of Zhongwei goats are unclear. In our study, we conducted circRNA expression profiling of Zhongwei goat skin exhibiting divergent curvature wool phenotypes at two developmental stages using the RNA-seq. In total, 12,682 circRNAs and 158 differentially expressed circRNAs (DE circRNAs) were identified. KEGG analysis illustrated that host genes of DE circRNAs were significantly enriched in the signaling pathways of Ras, JAK/STAT5, and cAMP, which might affect wool curvature. We further validated five circRNAs using qRT-PCR, which were consistent with the sequencing results. Functional verification assay demonstrated that circRNA8782 regulated fibroblast proliferation. In addition, we constructed a regulatory competing endogenous RNA (ceRNA) network and predicted circRNA3173-miR-16b-5p-IGF1 axes involved in the regulation of wool curvature. Our result will provide the foundation for uncovering the regulatory mechanisms of underlying wool curvature patterns in goats.

Keywords

circRNAs / goat / network / skin / wool curvature

Cite this article

Download citation ▾
Yingxiao Su, Zhanqiang Zhao, Zhanfa Liu, Xiaobo Li, Qian Chen, Yabin Pu, Lin Jiang, Xiaohong He, Yuehui Ma, Qianjun Zhao. Comprehensive analysis of the circular RNA expression profile and circRNA-miRNA-mRNA network in the goat skin with divergent wool curvature. Animal Research and One Health, 2025, 3(3): 316-328 DOI:10.1002/aro2.41

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ding, Y., Xue, X., Liu, Z., Ye, Y., Xiao, P., Pu, Y., Guan, W., Mwacharo, J.M., Ma, Y., & Zhao, Q. (2020). Expression profiling and functional characterization of miR-26a and miR-130a in regulating Zhongwei goat hair development via the TGF-β/SMAD pathway. International Journal of Molecular Sciences, 21(14), 5076. https://doi.org/10.3390/ijms21145076

[2]

Nissimov, J.N., & Das Chaudhuri, A.B. (2014). Hair curvature: A natural dialectic and review. Biological Reviews of the Cambridge Philosophical Society, 89(3), 723-766. https://doi.org/10.1111/brv.12081

[3]

Thibaut, S., Gaillard, O., Bouhanna, P., Cannell, D.W., & Bernard, B.A. (2005). Human hair shape is programmed from the bulb. British Journal of Dermatology, 152(4), 632-638. https://doi.org/10.1111/j.1365-2133.2005.06521.x

[4]

Vandenberg, L.N., & Levin, M. (2009). Perspectives and open problems in the early phases of left-right patterning. Seminars in Cell & Developmental Biology, 20(4), 456-463. https://doi.org/10.1016/j.semcdb.2008.11.010

[5]

Vandenberg, L.N., & Levin, M. (2010). Far from solved: A perspective on what we know about early mechanisms of left-right asymmetry. Developmental Dynamics : An Official Publication of the American Association of Anatomists, 239(12), 3131-3146. https://doi.org/10.1002/dvdy.22450

[6]

Sriwiriyanont, P., Hachiya, A., Pickens, W.L., Moriwaki, S., Kitahara, T., Visscher, M.O., Kitzmiller, W.J., Bello, A., Takema, Y., & Kobinger, G.P. (2011). Effects of IGF-binding protein 5 in dysregulating the shape of human hair. Journal of Investigative Dermatology, 131(2), 320-328. https://doi.org/10.1038/jid.2010.309

[7]

Chi, W., Wu, E., & Morgan, B.A. (2013). Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development, 140(8), 1676-1683. https://doi.org/10.1242/dev.090662

[8]

Bauer, A., Hadji Rasouliha, S., Brunner, M.T., Jagannathan, V., Bucher, I., Bannoehr, J., Varjonen, K., Bond, R., Bergvall, K., Welle, M.M., Roosje, P., & Leeb, T. (2019). A second KRT71 allele in curly coated dogs. Animal Genetics, 50(1), 97-100. https://doi.org/10.1111/age.12743

[9]

Salmela, E., Niskanen, J., Arumilli, M., Donner, J., Lohi, H., & Hytönen, M.K. (2019). A novel KRT71 variant in curly-coated dogs. Animal Genetics, 50(1), 101-104. https://doi.org/10.1111/age.12746

[10]

Kang, X., Liu, Y., Zhang, J., Xu, Q., Liu, C., & Fang, M. (2017). Characteristics and expression profile of KRT71 screened by suppression subtractive hybridization cDNA library in curly fleece Chinese tan sheep. DNA and Cell Biology, 36(7), 552-564. https://doi.org/10.1089/dna.2017.3718

[11]

Gandolfi, B., Alhaddad, H., Joslin, S.E., Khan, R., Filler, S., Brem, G., & Lyons, L.A. (2013). A splice variant in KRT71 is associated with curly coat phenotype of Selkirk Rex cats. Scientific Reports, 3(1), 2000. https://doi.org/10.1038/srep02000

[12]

Morgenthaler, C., Diribarne, M., Capitan, A., Legendre, R., Saintilan, R., Gilles, M., Esquerré, D., Juras, R., Khanshour, A., Schibler, L., & Cothran, G. (2017). A missense variant in the coil1A domain of the keratin 25 gene is associated with the dominant curly hair coat trait (Crd) in horse. Genetics Selection Evolution : GSE, 49(1), 85. https://doi.org/10.1186/s12711-017-0359-5

[13]

Thomer, A., Gottschalk, M., Christmann, A., Naccache, F., Jung, K., Hewicker-Trautwein, M., Distl, O., & Metzger, J. (2018). An epistatic effect of KRT25 on SP6 is involved in curly coat in horses. Scientific Reports, 8(1), 6374. https://doi.org/10.1038/s41598-018-24865-3

[14]

Pośpiech, E., Lee, S.D., Kukla-Bartoszek, M., Karłowska-Pik, J., Woźniak, A., Boroń, M., Zubańska, M., Bronikowska, A., Hong, S.R., Lee, J.H., Wojas-Pelc, A., Lee, H.Y., Spólnicka, M., & Branicki, W. (2018). Variation in the RPTN gene may facilitate straight hair formation in Europeans and East Asians. Journal of Dermatological Science, 91(3), 331-334. https://doi.org/10.1016/j.jdermsci.2018.06.003

[15]

Okano, J., Levy, C., Lichti, U., Sun, H.W., Yuspa, S.H., Sakai, Y., & Morasso, M.I. (2012). Cutaneous retinoic acid levels determine hair follicle development and downgrowth. Journal of Biological Chemistry, 287(47), 39304-39315. https://doi.org/10.1074/jbc.M112.397273

[16]

Wang, S., Wu, T., Sun, J., Li, Y., Yuan, Z., & Sun, W. (2021). Single-cell transcriptomics reveals the molecular anatomy of sheep hair follicle heterogeneity and wool curvature. Frontiers in Cell and Developmental Biology, 9, 800157. https://doi.org/10.3389/fcell.2021.800157

[17]

Liu, Y., Ding, Y., Liu, Z., Chen, Q., Li, X., Xue, X., Pu, Y., Ma, Y., & Zhao, Q. (2022). Integration analysis of transcriptome and proteome reveal the mechanisms of goat wool bending. Frontiers in Cell and Developmental Biology, 10, 836913. https://doi.org/10.3389/fcell.2022.836913

[18]

Asrani, K., Murali, S., Lam, B., Na, C.H., Phatak, P., Sood, A., Kaur, H., Khan, Z., Noë, M., Anchoori, R.K., Talbot, C.C., Jr., Smith, B., Skaro, M., & Lotan, T.L. (2019). mTORC1 feedback to AKT modulates lysosomal biogenesis through MiT/TFE regulation. The Journal of Clinical Investigation, 129(12), 5584-5599. https://doi.org/10.1172/JCI128287

[19]

Kristensen, L.S., Andersen, M.S., Stagsted, L. V.W., Ebbesen, K.K., Hansen, T.B., & Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. Nature Reviews Genetics, 20(11), 675-691. https://doi.org/10.1038/s41576-019-0158-7

[20]

Chen, L., Wang, C., Sun, H., Wang, J., Liang, Y., Wang, Y., & Wong, G. (2021). The bioinformatics toolbox for circRNA discovery and analysis. Briefings in Bioinformatics, 22(2), 1706-1728. https://doi.org/10.1093/bib/bbaa001

[21]

Wang, K., Long, B., Liu, F., Wang, J.X., Liu, C.Y., Zhao, B., Zhou, L.Y., Sun, T., Wang, M., Yu, T., Gong, Y., Liu, J., Dong, Y.H., Li, N., & Li, P.F. (2016). A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. European Heart Journal, 37(33), 2602-2611. https://doi.org/10.1093/eurheartj/ehv713

[22]

Mehta, S.L., Dempsey, R.J., & Vemuganti, R. (2020). Role of circular RNAs in brain development and CNS diseases. Progress in Neurobiology, 186, 101746. https://doi.org/10.1016/j.pneurobio.2020.101746

[23]

Guo, X., Xi, L., Li, L., Guo, J., Jin, W., Chang, C., Zhang, J., Xu, C., & Chen, G. (2020). circRNA-14723 promotes hepatocytes proliferation in rat liver regeneration by sponging rno-miR-16-5p. Journal of Cellular Physiology, 235(11), 8176-8186. https://doi.org/10.1002/jcp.29473

[24]

Shen, Y.Q., Pan, J.J., Sun, Z.Y., Chen, X.Q., Zhou, X.G., Zhou, X.Y., Cheng, R., & Yang, Y. (2019). Differential expression of circRNAs during rat lung development. International Journal of Molecular Medicine, 44(4), 1399-1413. https://doi.org/10.3892/ijmm.2019.4299

[25]

Ahmad, S.M., Bhat, B., Manzoor, Z., Dar, M.A., Taban, Q., Ibeagha-Awemu, E.M., Shabir, N., Hussain, M.I., Shah, R.A., & Ganai, N.A. (2022). Genome wide expression analysis of circular RNAs in mammary epithelial cells of cattle revealed difference in milk synthesis. PeerJ, 10, e13029. https://doi.org/10.7717/peerj.13029

[26]

Legnini, I., Di Timoteo, G., Rossi, F., Morlando, M., Briganti, F., Sthandier, O., Fatica, A., Santini, T., Andronache, A., Wade, M., Laneve, P., Rajewsky, N., & Bozzoni, I. (2017). Circ-ZNF609 is a circular RNA that can Be translated and functions in myogenesis. Molecular Cell, 66(1), 22-37.e9. https://doi.org/10.1016/j.molcel.2017.02.017

[27]

Zhang, Z., Fan, Y., Deng, K., Liang, Y., Zhang, G., Gao, X., El-Samahy, M.A., Zhang, Y., Deng, M., & Wang, F. (2022). Circular RNA circUSP13 sponges miR-29c to promote differentiation and inhibit apoptosis of goat myoblasts by targeting IGF1. The FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 36(1), e22097. https://doi.org/10.1096/fj.202101317R

[28]

Zhao, J., Shen, J., Wang, Z., Bai, M., Fan, Y., Zhu, Y., & Bai, W. (2022). CircRNA-0100 positively regulates the differentiation of cashmere goat SHF-SCs into hair follicle lineage via sequestering miR-153-3p to heighten the KLF5 expression. Archives of Animal Breeding, 65(1), 55-67. https://doi.org/10.5194/aab-65-55-2022

[29]

Hui, T., Zheng, Y., Yue, C., Wang, Y., Bai, Z., Sun, J., Cai, W., Zhang, X., Bai, W., & Wang, Z. (2021). Screening of cashmere fineness-related genes and their ceRNA network construction in cashmere goats. Scientific Reports, 11(1), 21977. https://doi.org/10.1038/s41598-021-01203-8

[30]

Shang, F., Wang, Y., Ma, R., Di, Z., Wu, Z., Hai, E., Rong, Y., Pan, J., Liang, L., Wang, Z., Wang, R., Liu, Z., Zhao, Y., Wang, Z., Li, J., & Zhang, Y. (2021). Expression profiling and functional analysis of circular RNAs in inner Mongolian cashmere goat hair follicles. Frontiers in Genetics, 12, 678825. https://doi.org/10.3389/fgene.2021.678825

[31]

Zhao, R., Liu, N., Han, F., Li, H., Liu, J., Li, L., Wang, G., & He, J. (2020). Identification and characterization of circRNAs in the skin during wool follicle development in Aohan fine wool sheep. BMC Genomics, 21(1), 187. https://doi.org/10.1186/s12864-020-6599-8

[32]

Lv, X., Chen, W., Sun, W., Hussain, Z., Chen, L., Wang, S., & Wang, J. (2020). Expression profile analysis to identify circular RNA expression signatures in hair follicle of Hu sheep lambskin. Genomics, 112(6), 4454-4462. https://doi.org/10.1016/j.ygeno.2020.07.046

[33]

Zhang, X.O., Dong, R., Zhang, Y., Zhang, J.L., Luo, Z., Zhang, J., Chen, L.L., & Yang, L. (2016). Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Research, 26(9), 1277-1287. https://doi.org/10.1101/gr.202895.115

[34]

Gao, Y., Wang, J., & Zhao, F. (2015). CIRI: An efficient and unbiased algorithm for de novo circular RNA identification. Genome Biology, 16(1), 4. https://doi.org/10.1186/s13059-014-0571-3

[35]

Jeck, W.R., Sorrentino, J.A., Wang, K., Slevin, M.K., Burd, C.E., Liu, J., Marzluff, W.F., & Sharpless, N.E. (2013). Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 19(2), 141-157. https://doi.org/10.1261/rna.035667.112

[36]

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., & Smyth, G.K. (2015). Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7), e47. https://doi.org/10.1093/nar/gkv007

[37]

Young, M.D., Wakefield, M.J., Smyth, G.K., & Oshlack, A. (2010). Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biology, 11(2), R14. https://doi.org/10.1186/gb-2010-11-2-r14

[38]

Wu, J., Mao, X., Cai, T., Luo, J., & Wei, L. (2006). KOBAS server: A web-based platform for automated annotation and pathway identification. Nucleic Acids Research, 34(Web Server issue), W720-W724. https://doi.org/10.1093/nar/gkl167

[39]

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498-2504. https://doi.org/10.1101/gr.1239303

[40]

Kalluri, R., & Neilson, E.G. (2003). Epithelial-mesenchymal transition and its implications for fibrosis. The Journal of Clinical Investigation, 112(12), 1776-1784. https://doi.org/10.1172/JCI20530

[41]

Kumar, P., Nagarajan, A., & Uchil, P.D. (2018). Analysis of cell viability by the MTT assay. Cold Spring Harbour Protocols, 2018(6), pdb.prot095505. https://doi.org/10.1101/pdb.prot095505

[42]

Urban, J., Qi, L., Zhao, H., Rybak, I., Rauen, K.A., & Kiuru, M. (2020). Comparison of hair manifestations in cardio-facio-cutaneous and Costello syndromes highlights the influence of the RAS pathway on hair growth. Journal of the European Academy of Dermatology and Venereology: JEADV, 34(3), 601-607. https://doi.org/10.1111/jdv.16082

[43]

Legrand, J. M.D., Roy, E., Ellis, J.J., Francois, M., Brooks, A.J., & Khosrotehrani, K. (2016). STAT5 activation in the dermal papilla is important for hair follicle growth phase induction. Journal of Investigative Dermatology, 136(9), 1781-1791. https://doi.org/10.1016/j.jid.2016.04.014

[44]

Miranda, M., Avila, I., Esparza, J., Shwartz, Y., Hsu, Y.C., Berdeaux, R., & Lowry, W.E. (2022). Defining a role for G-protein coupled receptor/cAMP/CRE-binding protein signaling in hair follicle stem cell activation. Journal of Investigative Dermatology, 142(1), 53-64.e3. https://doi.org/10.1016/j.jid.2021.05.031

[45]

Park, S., Kang, W., Choi, D., Son, B., & Park, T. (2020). Nonanal stimulates growth factors via cyclic adenosine monophosphate (cAMP) signaling in human hair follicle dermal papilla cells. International Journal of Molecular Sciences, 21(21), 8054. https://doi.org/10.3390/ijms21218054

[46]

Zhang, Y., Li, F., Shi, Y., Zhang, T., & Wang, X. (2022). Comprehensive transcriptome analysis of hair follicle morphogenesis reveals that lncRNA-H19 promotes dermal papilla cell proliferation through the chi-miR-214-3p/β-catenin Axis in cashmere goats. International Journal of Molecular Sciences, 23(17), 10006. https://doi.org/10.3390/ijms231710006

[47]

Zhu, N., Huang, K., Liu, Y., Zhang, H., Lin, E., Zeng, Y., Li, H., Xu, Y., Cai, B., Yuan, Y., Li, Y., & Lin, C. (2018). miR-195-5p regulates hair follicle inductivity of dermal papilla cells by suppressing Wnt/β-catenin activation. BioMed Research International, 2018, 4924356. https://doi.org/10.1155/2018/4924356

[48]

Lin, B., Zhu, J., Yin, G., Liao, M., Lin, G., Yan, Y., Huang, D., & Lu, S. (2021). Transcription factor DLX5 promotes hair follicle stem cell differentiation by regulating the c-MYC/microRNA-29c-3p/NSD1 Axis. Frontiers in Cell and Developmental Biology, 9, 554831. https://doi.org/10.3389/fcell.2021.554831

[49]

Yoon, S.Y., Dieterich, L.C., Karaman, S., Proulx, S.T., Bachmann, S.B., Sciaroni, C., & Detmar, M. (2019). An important role of cutaneous lymphatic vessels in coordinating and promoting anagen hair follicle growth. PLoS One, 14(7), e0220341. https://doi.org/10.1371/journal.pone.0220341

[50]

Adams, R.H., & Alitalo, K. (2007). Molecular regulation of angiogenesis and lymphangiogenesis. Nature Reviews Molecular Cell Biology, 8(6), 464-478. https://doi.org/10.1038/nrm2183

[51]

Hsu, Y.C., Li, L., & Fuchs, E. (2014). Emerging interactions between skin stem cells and their niches. Nature Medicine, 20(8), 847-856. https://doi.org/10.1038/nm.3643

[52]

Li, Y., Huang, M., Wang, Z., Liu, X., He, S., Wang, T., Ma, B., Liu, J., Li, X., Xiong, J., Hua, J., Ye, J., Lei, A., & Yang, Q. (2023). Genomic selection analysis of morphological and adaptation traits in Chinese indigenous dog breeds. Frontiers in Veterinary Science, 10, 1237780. https://doi.org/10.3389/fvets.2023.1237780

[53]

Arzik, Y., Kizilaslan, M., Behrem, S., White, S.N., Piel, L. M.W., & Cinar, M.U. (2023). Genome-wide scan of wool production traits in Akkaraman sheep. Genes, 14(3), 713. https://doi.org/10.3390/genes14030713

[54]

Zhai, B., Zhang, L., Wang, C., Zhao, Z., Zhang, M., & Li, X. (2019). Identification of microRNA-21 target genes associated with hair follicle development in sheep. PeerJ, 7, e7167. https://doi.org/10.7717/peerj.7167

[55]

Gai, Z., Gui, T., & Muragaki, Y. (2011). The function of TRPS1 in the development and differentiation of bone, kidney, and hair follicles. Histology & Histopathology, 26(7), 915-921. https://doi.org/10.14670/HH-26.915

[56]

Doma, E., Rupp, C., & Baccarini, M. (2013). EGFR-ras-raf signaling in epidermal stem cells: Roles in hair follicle development, regeneration, tissue remodeling and epidermal cancers. International Journal of Molecular Sciences, 14(10), 19361-19384. https://doi.org/10.3390/ijms141019361

[57]

Mukhopadhyay, A., Krishnaswami, S.R., & Yu, B.D. (2011). Activated Kras alters epidermal homeostasis of mouse skin, resulting in redundant skin and defective hair cycling. Journal of Investigative Dermatology, 131(2), 311-319. https://doi.org/10.1038/jid.2010.296

[58]

Mukhopadhyay, A., Krishnaswami, S.R., Cowing-Zitron, C., Hung, N.J., Reilly-Rhoten, H., Burns, J., & Yu, B.D. (2013). Negative regulation of Shh levels by Kras and Fgfr2 during hair follicle development. Developmental Biology, 373(2), 373-382. https://doi.org/10.1016/j.ydbio.2012.10.024

[59]

Drosten, M., Lechuga, C.G., & Barbacid, M. (2014). Ras signaling is essential for skin development. Oncogene, 33(22), 2857-2865. https://doi.org/10.1038/onc.2013.254

[60]

Bikle, D.D. (2023). Role of vitamin D and calcium signaling in epidermal wound healing. Journal of Endocrinological Investigation, 46(2), 205-212. https://doi.org/10.1007/s40618-022-01893-5

[61]

Kang, W., Park, S., Choi, D., Son, B., & Park, T. (2022). Activation of cAMP signaling in response to α-phellandrene promotes vascular endothelial growth factor levels and proliferation in human dermal papilla cells. International Journal of Molecular Sciences, 23(16), 8959. https://doi.org/10.3390/ijms23168959

[62]

Zhang, Y., Xia, S., Wang, T., Wang, S., Yuan, D., Li, F., & Wang, X. (2020). Chi-miR-30b-5p inhibits dermal papilla cells proliferation by targeting CaMKIIδ gene in cashmere goat. BMC Genomics, 21(1), 430. https://doi.org/10.1186/s12864-020-06799-1

[63]

Zhu, Y., Wang, Y., Zhao, J., Shen, J., Wang, Z., Bai, M., Fan, Y., Yin, R., Mao, Y., & Bai, W. (2023). CircRNA-1967 participates in the differentiation of goat SHF-SCs into hair follicle lineage by sponging miR-93-3p to enhance LEF1 expression. Animal Biotechnology, 34(3), 482-494. https://doi.org/10.1080/10495398.2021.1975729

[64]

Wu, X., Wang, J., Kang, Y., Wang, Q., Qu, J., Sun, X., Ji, D., & Li, Y. (2022). Regulation of proliferation and apoptosis of hair follicle stem cells by miR-145-5p in Yangtze river Delta white goats. Genes, 13(11), 1973. https://doi.org/10.3390/genes13111973

[65]

Hwang, D., Lee, H., Lee, J., Lee, M., Cho, S., Kim, T., & Kim, H. (2021). Micro-current stimulation has potential effects of hair growth-promotion on human hair follicle-derived papilla cells and animal model. International Journal of Molecular Sciences, 22(9), 4361. https://doi.org/10.3390/ijms22094361

[66]

Chen, M., Xu, Z., Chen, Y., Yang, Q., Lu, R., Dong, Y., Li, X., Xie, J., Xu, R.H., Jia, H., Kang, Y., & Wu, Y. (2023). EGFR marks a subpopulation of dermal mesenchymal cells highly expressing IGF1 which enhances hair follicle regeneration. Journal of Cellular and Molecular Medicine, 27(12), 1697-1707. https://doi.org/10.1111/jcmm.17766

RIGHTS & PERMISSIONS

2023 The Authors. Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/