Novel FSH receptor heterodimer may be related to the high prolificacy of Jintang black goat

Ye Cao , Sujun Zhao , Mingxing Chu , Ran Di , Yufang Liu , Li Liu , Xueqin Zhang , Shaoping Qian , Yizheng Zhang

Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (1) : 71 -81.

PDF
Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (1) : 71 -81. DOI: 10.1002/aro2.35
ARTICLE

Novel FSH receptor heterodimer may be related to the high prolificacy of Jintang black goat

Author information +
History +
PDF

Abstract

Follicle-stimulating hormone (FSH) is the central hormone of the mammalian reproductive system. It targets the FSH receptor (FSHR), a member of the G protein-coupled receptor family, to induce the FSH signal transduction. In the highly prolific Jintang black goat, gonadotropin level is not higher than that of Boer goat. However, two isoforms of FSHRs (FSHRA and FSHRB), generated from the alternative splicing of the same primary FSHR transcript, were expressed in the reproductive organs of Jintang black goat simultaneously. The mRNA level of FSHRB is 45.89, 3.80, and 13.81 times greater than that of FSHRA in the hypothalamus, pituitary, and ovary of the Jintang black goat, respectively. We found that FSHRA could interact with FSHRB protein, leading to augment of the FSH signaling transduction pathway. The enhancement of FSH signaling could increase the in vitro oocyte maturation rate. It implied that this might be the important reason for the high prolificacy in Jintang black goat.

Keywords

dimerization / FRET / FSHRA / FSHRB / in vitro maturation / Jintang black goat / prolificacy

Cite this article

Download citation ▾
Ye Cao, Sujun Zhao, Mingxing Chu, Ran Di, Yufang Liu, Li Liu, Xueqin Zhang, Shaoping Qian, Yizheng Zhang. Novel FSH receptor heterodimer may be related to the high prolificacy of Jintang black goat. Animal Research and One Health, 2025, 3(1): 71-81 DOI:10.1002/aro2.35

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li, J. (2005). Efficient and safe production Technology of meat goat. Chinese Agricultural Press beijing.

[2]

Moaeen-ud-Din, M., Yang, L. G., Chen, S. L., Zhang, Z. R., Xiao, J. Z., Wen, Q. Y., & Dai, M. (2008). Reproductive performance of Matou goat under sub-tropical monsoonal climate of Central China. Tropical Animal Health and Production, 40(1), 17-23.

[3]

Kano, Y., Sawasaki, T., & Oyama, T. (1977). [Biological characteristics of miniature "Shiba" goats (author’s transl)]. Jikken Dobutsu, 26(3), 239-246.

[4]

Wilson, R. T., & Murayi, T. (1988). Productivity of the small East African goat and its crosses with the Anglo-Nubian and the Alpine in Rwanda. Tropical Animal Health and Production, 20(4), 219-228.

[5]

Souza, C. J., MacDougall, C., MacDougall, C., Campbell, B., McNeilly, A., & Baird, D. (2001). The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene. Journal of Endocrinology, 169(2), R1-R6.

[6]

Galloway, S. M., McNatty, K. P., Cambridge, L. M., Laitinen, M. P., Juengel, J. L., Jokiranta, T. S., McLaren, R. J., Luiro, K., Dodds, K. G., Montgomery, G. W., Beattie, A. E., Davis, G. H., & Ritvos, O. (2000). Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nature Genetics, 25(3), 279-283.

[7]

Juengel, J. L., Hudson, N. L., Heath, D. A., Smith, P., Reader, K. L., Lawrence, S. B., O’Connell, A. R., Laitinen, M. P., Cranfield, M., Groome, N. P., Ritvos, O., & McNatty, K. P. (2002). Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep. Biology of Reproduction, 67(6), 1777-1789.

[8]

Shimasaki, S., Moore, R. K., Otsuka, F., & Erickson, G. F. (2004). The bone morphogenetic protein system in mammalian reproduction. Endocrine Reviews, 25(1), 72-101.

[9]

Tang, J., Hu, W., Di, R., Liu, Q., Wang, X., Zhang, X., Zhang, J., & Chu, M. (2018). Expression analysis of the prolific candidate genes, BMPR1B, BMP15, and GDF9 in small tail han ewes with three fecundity (FecB gene) genotypes. Animals, 8(10), 166.

[10]

Bi, Y., Wang, Z., Wang, Q., Liu, H., Guo, Z., Pan, C., Chen, H., Zhu, H., Wu, L., & Lan, X. (2022). Are copy number variations within the FecB gene significantly associated with morphometric traits in goats? Animals, 12, 1547.

[11]

Landomiel, F., De Pascali, F., Raynaud, P., Jean-Alphonse, F., Yvinec, R., Pellissier, L. P., Bozon, V., Bruneau, G., Crépieux, P., Poupon, A., & Reiter, E. (2019). Biased signaling and Allosteric modulation at the FSHR. Frontiers in Endocrinology, 10, 148.

[12]

Santi, D., Crépieux, P., Reiter, E., Spaggiari, G., Brigante, G., Casarini, L., Rochira, V., & Simoni, M. (2020). Follicle-stimulating hormone (FSH) action on spermatogenesis: A focus on physiological and therapeutic roles. Journal of Clinical Medicine, 9(4), 1014.

[13]

Taieb, J., Grynberg, M., Pierre, A., Arouche, N., Massart, P., Belville, C., Hesters, L., Frydman, R., Catteau-Jonard, S., Fanchin, R., Picard, J. Y., Josso, N., Rey, R. A., & Di Clemente, N. (2011). FSH and its second messenger cAMP stimulate the transcription of human anti-Mullerian hormone in cultured granulosa cells. Molecular Endocrinology, 25(4), 645-655.

[14]

Lizneva, D., Rahimova, A., Kim, S. M., Atabiekov, I., Javaid, S., Alamoush, B., Taneja, C., Khan, A., Sun, L., Azziz, R., Yuen, T., & Zaidi, M. (2019). FSH beyond fertility. Frontiers in Endocrinology, 10, 136.

[15]

Raz, T., & Card, C. (2009). Efficiency of superovulation and in vivo embryo production in eFSH-treated donor mares after estrus synchronization with progesterone and estradiol-17beta. Theriogenology, 72(2), 169-178.

[16]

Andersen, T., Hyldstrup, L., & Quaade, F. (1983). Formula diet in the treatment of moderate obesity. International Journal of Obesity, 7, 423-430.

[17]

Andersen, T. T., Curatolo, L. M., & Reichert, L. E., Jr. (1983). Follitropin binding to receptors in testis: Studies on the reversibility and thermodynamics of the reaction. Molecular and Cellular Endocrinology, 33(1), 37-52.

[18]

Cheng, K. W. (1975). A radioreceptor assay for follicle-stimulating hormone. Journal of Clinical Endocrinology & Metabolism, 41(3), 581-589.

[19]

Berney, C., & Danuser, G. (2003). FRET or no FRET: A quantitative comparison. Biophysical Journal, 84(6), 3992-4010.

[20]

Wenck, A., Pugieux, C., Turner, M., Dunn, M., Stacy, C., Tiozzo, A., Dunder, E., van Grinsven, E., Khan, R., Sigareva, M., Wang, W. C., Reed, J., Drayton, P., Oliver, D., Trafford, H., Legris, G., Rushton, H., Tayab, S., Launis, K., …, & Melchers, L. (2003). Reef-coral proteins as visual, non-destructive reporters for plant transformation. Plant Cell Reports, 22(4), 244-251.

[21]

Masuho, I., Skamangas, N. K., Muntean, B. S., & Martemyanov, K. A. (2021). Diversity of the gβγ complexes defines spatial and temporal bias of GPCR signaling. Cell Systems, 12(4), 324-337.

[22]

Gromoll, J., Pekel, E., & Nieschlag, E. (1996). The structure and organization of the human follicle-stimulating hormone receptor (FSHR) gene. Genomics, 35(2), 308-311.

[23]

Agrawal, G., & Dighe, R. R. (2009). Critical involvement of the hinge region of the follicle-stimulating hormone receptor in the activation of the receptor. Journal of Biological Chemistry, 284(5), 2636-2647.

[24]

Szidonya, L., Cserzo, M., & Hunyady, L. (2008). Dimerization and oligomerization of G-protein-coupled receptors: Debated structures with established and emerging functions. The Journal of endocrinology, 196(3), 435-453.

[25]

Thomas, R. M., Nechamen, C. A., Mazurkiewicz, J. E., Muda, M., Palmer, S., & Dias, J. A. (2007). Follice-stimulating hormone receptor forms oligomers and shows evidence of carboxyl-terminal proteolytic processing. Endocrinology, 148(5), 1987-1995.

[26]

Terrillon, S., & Bouvier, M. (2004). Roles of G-protein-coupled receptor dimerization: From ontogeny to signalling regulation. EMBO Reports, 5(1), 30-34.

[27]

Fan, Q. R., & Hendrickson, W. A. (2005). Structure of human follicle-stimulating hormone in complex with its receptor. Nature, 433(7023), 269-277.

[28]

Agwuegbo, U. T., Colley, E., Albert, A. P., Butnev, V. Y., Bousfield, G. R., & Jonas, K. C. (2021). Differential FSH glycosylation modulates FSHR oligomerization and subsequent cAMP signaling. Frontiers in Endocrinology, 12, 765727.

[29]

Thomas, R. M., Nechamen, C. A., Mazurkiewicz, J. E., Muda, M., Palmer, S., & Dias, J. A. (2007). Follice-stimulating hormone receptor forms oligomers and shows evidence of carboxyl-terminal proteolytic processing. Endocrinology, 148(5), 1987-1995.

[30]

Sirard, M. A., Desrosier, S., & Assidi, M. (2007). In vivo and in vitro effects of FSH on oocyte maturation and developmental competence. Theriogenology, 68(Suppl 1), S71-S76.

[31]

Chen, J., & Downs, S. M. (2008). AMP-activated protein kinase is involved in hormone-induced mouse oocyte meiotic maturation in vitro. Developmental Biology, 313(1), 47-57.

[32]

Bonnet, A., Le Cao, K. A., Sancristobal, M., Benne, F., Robert-Granié C. C., Law-So, G., Fabre, S., Besse, P., De Billy, E., Quesnel, H., Hatey, F., & Tosser-Klopp, G. (2008). In vivo gene expression in granulosa cells during pig terminal follicular development. Reproduction, 136(2), 211-224.

[33]

Xu, N. Y., Zhang, S. Q., & Peng, S. H. (2003). [Investigation on the distribution and their effects on reproduction traits of three major genes in Jinhua pigs]. Yi Chuan Xue Bao, 30, 1090-1096.

[34]

Jiao Shuxian, W. R., Cai, Z., Zhao, S., & Liao, S. (1992). Comparative study on LH and FSH patterns during perioestrous period in Fengjing and Landrace gilts. Scientia Agricultura Sinica, 25, 80-85.

[35]

Jiao Shuxian, W. R., Cai, Z., & Zhao, S. (1992). Liao Shuren Serum profiles of five reproductive hormones during first estrous cycle in Fengjing and landrace gilts. Acta Veterinaria et Zootechnica Sinica, 23, 202-206.

[36]

Lahlou-Kassi, A., Schams, D., & Glatzel, P. (1984). Plasma gonadotrophin concentrations during the oestrous cycle and after ovariectomy in two breeds of sheep with low and high fecundity. Journal of Reproduction and Fertility, 70(1), 165-173.

[37]

Sonjaya, H., & Driancourt, M. A. (1989). FSH concentrations and sensitivity to feedback in infant lambs from breeds differing in prolificacy. Journal of Reproduction and Fertility, 85(2), 461-469.

[38]

Bartlewski, P. M., Beard, A. P., Cook, S. J., Chandolia, R. K., Honaramooz, A., & Rawlings, N. C. (1999). Ovarian antral follicular dynamics and their relationships with endocrine variables throughout the oestrous cycle in breeds of sheep differing in prolificacy. Journal of Reproduction and Fertility, 115(1), 111-124.

[39]

Abdennebi, L., Monget, P., Pisselet, C., Remy, J. J., Salesse, R., & Monniaux, D. (1999). Comparative expression of luteinizing hormone and follicle-stimulating hormone receptors in ovarian follicles from high and low prolific sheep breeds. Biology of Reproduction, 60(4), 845-854.

[40]

Campbell, B. K., Baird, D. T., Souza, C. J., & Webb, R. (2003). The FecB (Booroola) gene acts at the ovary: In vivo evidence. Reproduction, 126, 101-111.

RIGHTS & PERMISSIONS

2023 The Authors. Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

226

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/