Integration analysis of transcriptome and proteome of Chinese Merino sheep (Ovis aries) embryonic skeletal muscle

Mian Feng , Wenping Hu , Xinyue Wang , Lulu Liu , Yunhui Liu , Li Zhang

Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (1) : 129 -142.

PDF
Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (1) : 129 -142. DOI: 10.1002/aro2.33
ARTICLE

Integration analysis of transcriptome and proteome of Chinese Merino sheep (Ovis aries) embryonic skeletal muscle

Author information +
History +
PDF

Abstract

The growth and development of sheep late fetal skeletal muscle undergoes significant changes. However, the specific mechanism remains unknown. In this study, we performed the comprehensive analysis of transcriptome and proteome of Chinese Merino sheep at embryonic ages Day85 (D85N), Day105 (D105N), and Day135 (D135N) by the tandem mass tags (TMT) and RNA-seq methods. Totally 717, 1253, and 1873 differentially expressed genes (DEGs) were identified in the three comparison groups (D85N vs. D105N, D105N vs. D135N, and D85N vs. D135N). Among which 7, 80, and 162 DEGs were identified with the same trends at mRNA and protein levels in the three groups. Enrichment analysis showed that 7 genes with same trends in D85 vs. D105 have not been enriched in any pathways, which indicated that the development of skeletal muscle underwent significant changes with post-transcription regulation during this period. These genes with same trends in D105N vs. D135N were mainly enriched in the pathways related to skeletal muscle metabolism and maturation, including oxidative phosphorylation, glycolysis/gluconeogenesis, tight junction, and HIF-1 pathways, which indicated that the development of skeletal muscle tended to maturation during this period. These results provided evidence for ovine late fetal skeletal muscle fibers development from proliferating to thickening at simultaneous transcriptional and translational levels.

Keywords

fetal skeletal muscle / integrate analysis / proteomics / sheep / transcriptomics

Cite this article

Download citation ▾
Mian Feng, Wenping Hu, Xinyue Wang, Lulu Liu, Yunhui Liu, Li Zhang. Integration analysis of transcriptome and proteome of Chinese Merino sheep (Ovis aries) embryonic skeletal muscle. Animal Research and One Health, 2025, 3(1): 129-142 DOI:10.1002/aro2.33

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lee, S. H., Joo, S. T., & Ryu, Y. C. (2010). Skeletal muscle fiber type and myofibrillar proteins in relation to meat quality. Meat Science, 86(1), 166-170.

[2]

Moriggi, M., Belloli, S., Barbacini, P., Murtaj, V., Torretta, E., Chaabane, L., Canu, T., Penati, S., Malosio, M. L., Esposito, A., Gelfi, C., Moresco, R. M., & Capitanio, D. (2021). Skeletal muscle proteomic profile revealed gender-related metabolic responses in a diet-induced obesity animal model. International journal of molecular sciences, 22(9), 4680.

[3]

Braun, T., & Gautel, M. (2011). Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nature Reviews Molecular Cell Biology, 12(6), 349-361.

[4]

Gurd, B. J., Menezes, E. S., Arhen, B. B., & Islam, H. (2023). Impacts of altered exercise volume, intensity, and duration on the activation of AMPK and CaMKII and increases in PGC-1alpha mRNA. Seminars in Cell & Developmental Biology, 143, 17-27.

[5]

Koller, A., Mair, J., Schobersberger, W., Wohlfarter, T., Haid, C., Mayr, M., Villiger, B., Frey, W., & Puschendorf, B. (1998). Effects of prolonged strenuous endurance exercise on plasma myosin heavy chain fragments and other muscular proteins. Cycling vs running. The Journal of sports medicine and physical fitness, 38(1), 10-17.

[6]

Ren, H., Li, L., Su, H., Xu, L., Wei, C., Zhang, L., Li, H., Liu, W., & Du, L. (2011). Histological and transcriptome-wide level characteristics of fetal myofiber hyperplasia during the second half of gestation in Texel and Ujumqin sheep. BMC Genomics, 12(1), 411.

[7]

Oksbjerg, N., Nissen, P. M., Therkildsen, M., Møller, H. S., Larsen, L. B., Andersen, M., & Young, J. F. (2013). Meat science and muscle biology symposium: In utero nutrition related to fetal development, postnatal performance, and meat quality of pork1. Journal of Animal Science, 91(3), 1443-1453.

[8]

Ashmore, C. R., Addis, P. B., & Doerr, L. (1973). Development of muscle fibers in the fetal pig. Journal of Animal Science, 36(6), 1088-1093.

[9]

Wang, X., Shi, T., Zhao, Z., Hou, H., & Zhang, L. (2020). Proteomic analyses of sheep (ovis aries) embryonic skeletal muscle. Scientific Reports, 10(1), 1750.

[10]

White, R. B., Bierinx, A. S., Gnocchi, V. F., & Zammit, P. S. (2010). Dynamics of muscle fibre growth during postnatal mouse development. BMC Developmental Biology, 10(1), 21.

[11]

Di, J., Ainiwaer, L., Xu, X., Zhang, Y., Yu, L., & Li, W. (2014). Genetic trends for growth and wool traits of Chinese superfine Merino sheep using a multi-trait animal model. Small Ruminant Research, 117(1), 47-51.

[12]

Zhao, B., Luo, H., Huang, X., Wei, C., Di, J., Tian, Y., Fu, X., Li, B., Liu, G. E., Fang, L., Zhang, S., & Tian, K. (2021). Integration of a single-step genome-wide association study with a multi-tissue transcriptome analysis provides novel insights into the genetic basis of wool and weight traits in sheep. Genetics, selection, evolution : GSE, 53(1), 56.

[13]

Lv, X., Chen, L., He, S., Liu, C., Han, B., Liu, Z., Yusupu, M., Blair, H., Kenyon, P., Morris, S., Li, W., & Liu, M. (2020). Effect of nutritional restriction on the hair follicles development and skin transcriptome of Chinese merino sheep. Animals, 10(6), 1058.

[14]

Zhang, Q., Han, Y., Yang, Y., Zhou, P., & Shen, X. (2022). Effects of the seleno-chitosan on daily gain, wool yield, and blood parameter in the Chinese merino sheep. Biological Trace Element Research, 200(11), 4704-4711.

[15]

Ashmore, C. R., Robinson, D. W., Rattray, P., & Doerr, L. (1972). Biphasic development of muscle fibers in the fetal lamb. Experimental Neurology, 37(2), 241-255.

[16]

Fahey, A. J., Brameld, J. M., Parr, T., & Buttery, P. J. (2005). Ontogeny of factors associated with proliferation and differentiation of muscle in the ovine fetus. Journal of Animal Science, 83(10), 2330-2338.

[17]

Chao, T., Wang, G., Wang, J., Liu, Z., Ji, Z., Hou, L., & Zhang, C. (2016). Identification and classification of new transcripts in dorper and small-tailed han sheep skeletal muscle transcriptomes. PLoS One, 11(7), e159638.

[18]

Zhao, L., Zhang, D., Li, X., Zhang, Y., Zhao, Y., Xu, D., Cheng, J., Wang, J., Li, W., Lin, C., Yang, X., Ma, Z., Cui, P., Zhang, X., & Wang, W. (2022). Comparative proteomics reveals genetic mechanisms of body weight in Hu sheep and Dorper sheep. Journal of Proteomics, 267, 104699.

[19]

Xue, J., & Li, C. L. K. Y. (2017). Study on differentiation of fetal skeletal muscle development characteristics between German and Chinese merino sheep. Grass-Feeding Livestock (04), 1-6.

[20]

Sulayman, A., Tian, K., Huang, X., Tian, Y., Xu, X., Fu, X., Zhao, B., Wu, W., Wang, D., Yasin, A., & Tulafu, H. (2019). Genome-wide identification and characterization of long non-coding RNAs expressed during sheep fetal and postnatal hair follicle development. Scientific Reports, 9(1), 8501.

[21]

Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357-359.

[22]

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., & Salzberg, S. L. (2013). TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 14(4), R36.

[23]

Kim, D., & Salzberg, S. L. (2011). TopHat-fusion: An algorithm for discovery of novel fusion transcripts. Genome Biology, 12(8), R72.

[24]

Pertea, M., Kim, D., Pertea, G. M., Leek, J. T., & Salzberg, S. L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols, 11(9), 1650-1667.

[25]

Tyanova, S., Temu, T., & Cox, J. (2016). The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nature Protocols, 11(12), 2301-2319.

[26]

Camon, E., Magrane, M., Barrell, D., Lee, V., Dimmer, E., Maslen, J., Binns, D., Harte, N., Lopez, R., & Apweiler, R. (2004). The gene ontology annotation (GOA) database: Sharing knowledge in uniprot with gene ontology. Nucleic Acids Research, 32(90001), D262-D266.

[27]

Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., & Yamanishi, Y. (2008). KEGG for linking genomes to life and the environment. Nucleic Acids Research, 36, D480-D484.

[28]

Legrain, P., Wojcik, J., & Gauthier, J. (2001). Protein-protein interaction maps: A lead towards cellular functions (Vol. 17). Elsevier Ltd.346.

[29]

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498-2504.

[30]

Lombardi, A., Moreno, M., de Lange, P., Iossa, S., Busiello, R. A., & Goglia, F. (2015). Regulation of skeletal muscle mitochondrial activity by thyroid hormones: Focus on the “old” triiodothyronine and the “emerging” 3,5-diiodothyronine. Frontiers in Physiology, 6.

[31]

Bloise, F. F., Cordeiro, A., & Ortiga-Carvalho, T. M. (2018). Role of thyroid hormone in skeletal muscle physiology. Journal of Endocrinology, 236(1), R57-R68.

[32]

Sylow, L., Jensen, T. E., Kleinert, M., Hojlund, K., Kiens, B., Wojtaszewski, J., Prats, C., Schjerling, P., & Richter, E. A. (2013). Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle. Diabetes, 62(6), 1865-1875.

[33]

Broussard, J. L., Bergman, R. N., Bediako, I. A., Paszkiewicz, R. L., Iyer, M. S., & Kolka, C. M. (2018). Insulin access to skeletal muscle is preserved in obesity induced by polyunsaturated diet. Obesity, 26(1), 119-125.

[34]

Bouallegue, A., Daou, G. B., & Srivastava, A. K. (2007). Endothelin-1-induced signaling pathways in vascular smooth muscle cells. Current Vascular Pharmacology, 5(1), 45-52.PMID: 17266612 2007.

[35]

Csernoch, L., & Jacquemond, V. (2015). Phosphoinositides in Ca(2+) signaling and excitation-contraction coupling in skeletal muscle: An old player and newcomers. Journal of Muscle Research & Cell Motility, 36(6), 491-499.

[36]

Heilmeyer, L. M. G., Han, J., Thieleczek, R., Varsanyi, M., & Mayr, G. W. (1990). Relation of phosphatidylinositol metabolism to glycolytic pathway in skeletal muscle membranes. Molecular and Cellular Biochemistry, 99(2), 111-116.

[37]

de Sousa, A. R., Penalva, L. O., Marcotte, E. M., & Vogel, C. (2009). Global signatures of protein and mRNA expression levels. Molecular bioSystems, 5(12), 1512-1526.

[38]

Shang, P., Wang, Z., Chamba, Y., Zhang, B., Zhang, H., & Wu, C. (2019). A comparison of prenatal muscle transcriptome and proteome profiles between pigs with divergent growth phenotypes. Journal of Cellular Biochemistry, 120(4), 5277-5286.

[39]

Li, X., Xie, S., Qian, L., Cai, C., Bi, H., & Cui, W. (2020). Identification of genes related to skeletal muscle growth and development by integrated analysis of transcriptome and proteome in myostatin-edited Meishan pigs. Journal of Proteomics, 213, 103628.

[40]

Cirillo, F., Resmini, G., Ghiroldi, A., Piccoli, M., Bergante, S., Tettamanti, G., & Anastasia, L. (2017). Activation of the hypoxia-inducible factor 1a promotes myogenesis through the noncanonical Wnt pathway, leading to hypertrophic myotubes. The FASEB Journal, 31(5), 2146-2156.

[41]

Kamada, Y., Arai, Y., Toyama, S., Inoue, A., Nakagawa, S., Fujii, Y., Kaihara, K., Cha, R., Mazda, O., & Takahashi, K. (2023). Hypoxia with or without treadmill exercises affects slow-twitch muscle atrophy and joint destruction in a rat model of rheumatoid arthritis. International Journal of Molecular Sciences, 24(11), 9761.

[42]

Yu, Q., Wu, W., Tian, X., Hou, M., Dai, R., & Li, X. (2017). Unraveling proteome changes of Holstein beef M. semitendinosus and its relationship to meat discoloration during post-mortem storage analyzed by label-free mass spectrometry. Journal of Proteomics, 154, 85-93.

[43]

Boudon, S., Ounaissi, D., Viala, D., Monteils, V., Picard, B., & Cassar-Malek, I. (2020). Label free shotgun proteomics for the identification of protein biomarkers for beef tenderness in muscle and plasma of heifers. Journal of Proteomics, 217, 103685.

[44]

Dragon, A. H., Rowe, C. J., Rhodes, A. M., Pak, O. L., Davis, T. A., & Ronzier, E. (2023). Systematic identification of the optimal housekeeping genes for accurate transcriptomic and proteomic profiling of tissues following complex traumatic injury. Methods and Protocols, 6(2), 22.

[45]

Kang, J., Kim, D., Rhee, J., Seo, J., Park, I., Kim, J., Lee, D., Lee, W., Kim, Y. L., Yoo, K., Bae, S., Chung, J., Seong, R. H., & Kong, Y. (2023). Baf155 regulates skeletal muscle metabolism via HIF-1a signaling. PLoS Biology, 21(7), e3002192.

[46]

Zhang, Y., Beketaev, I., Ma, Y., & Wang, J. (2022). Sumoylation-deficient phosphoglycerate mutase 2 impairs myogenic differentiation. Frontiers in Cell and Developmental Biology, 10, 10.

[47]

Qiu, H., Xu, X., Fan, B., Rothschild, M. F., Martin, Y., & Liu, B. (2010). Investigation of LDHA and COPB1 as candidate genes for muscle development in the MYOD1 region of pig chromosome 2. Molecular Biology Reports, 37(1), 629-636.

[48]

Qiu, H., Zhao, S., Xu, X., Yerle, M., & Liu, B. (2008). Assignment and expression patterns of porcine muscle-specific isoform of phosphoglycerate mutase gene. Journal of Genetics and Genomics, 35(5), 257-260.

[49]

Schiaffino, S., & Reggiani, C. (2011). Fiber types in mammalian skeletal muscles. Physiological Reviews, 91(4), 1447-1531.

[50]

Cheng, J., Wang, L., Wang, S., Chen, R., Zhang, T., Ma, H., Lu, H., & Yuan, G. (2021). Transcriptomic analysis of thigh muscle of Lueyang black-bone chicken in free-range and caged feeding. Animal Biotechnology, 34(4), 1-795.

[51]

Burska, D., Stiburek, L., Krizova, J., Vanisova, M., Martinek, V., Sladkova, J., Zamecnik, J., Honzik, T., Zeman, J., Hansikova, H., & Tesarova, M. (2021). Homozygous missense mutation in UQCRC2 associated with severe encephalomyopathy, mitochondrial complex III assembly defect and activation of mitochondrial protein quality control. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1867(8), 166147.

[52]

Stephan, K., & Ott, M. (2020). Timing of dimerization of the bc complex during mitochondrial respiratory chain assembly. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1861(5-6), 148177.

[53]

Voillet, V., San, C. M., Pere, M. C., Billon, Y., Canario, L., Liaubet, L., & Lefaucheur, L. (2018). Integrated analysis of proteomic and transcriptomic data highlights late fetal muscle maturation process. Molecular & Cellular Proteomics, 17(4), 672-693.

RIGHTS & PERMISSIONS

2023 The Authors. Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

200

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/