Integrative analysis of genome-wide association study and transcriptomics to identify potential candidate genes influencing drip loss in Beijing Black pigs

Hongmei Gao , Jingjing Tian , Run Zhang , Xiance Liu , Hai Liu , Fuping Zhao , Zhenhua Xue , Lixian Wang , Xitao Jing , Longchao Zhang

Animal Research and One Health ›› 2024, Vol. 2 ›› Issue (4) : 446 -457.

PDF
Animal Research and One Health ›› 2024, Vol. 2 ›› Issue (4) : 446 -457. DOI: 10.1002/aro2.32
ARTICLE

Integrative analysis of genome-wide association study and transcriptomics to identify potential candidate genes influencing drip loss in Beijing Black pigs

Author information +
History +
PDF

Abstract

Understanding the genetic factors related to meat drip loss is of great importance for animal breeding and production. In this study, we employed a combination of genome-wide association study (GWAS) mapping and RNA sequencing (RNA-seq) data to effectively identify potentially functional single nucleotide polymorphisms (SNPs) as well as candidate genes associated with drip loss (DL) in Beijing Black pigs. Initially, we conducted a single- and multi-trait GWAS on drip loss traits in 441 Beijing Black pigs at 24 (DL24) and 48 (DL48) hours postmortem using the Illumina pig 50K SNP chip. Five SNPs with annotations for four genes (FGGY, LHFPL6, OSBPL1A, and NMNAT3) were consistently identified in single or multiple trait GWAS results, indicating their potential pleiotropic effects on drip loss. Next, a comprehensive comparative transcriptomic analysis was performed on samples of Beijing Black pigs exhibiting extremely high and low drip loss, resulting in the identification of 21 differentially expressed genes (DGEs) as potential candidates. Additionally, protein–protein interaction (PPI) network analysis revealed reciprocal regulatory relationships between FOXO1, OSBPL1A, DOCK1 (identified from GWAS) and the candidate DGEs obtained from RNA-seq data. Therefore, we propose that these genes may impact drip loss traits through gene interactions. In conclusion, our integrative analysis screened candidate genes that may affect the drip loss traits in Beijing Black pigs, which provides crucial insights into the molecular mechanisms of drip loss and serves as a theoretical reference for improving meat quality in Beijing Black pigs.

Keywords

Beijing Black pig / drip loss / genome-wide association study / transcriptomics / water holding capacity

Cite this article

Download citation ▾
Hongmei Gao, Jingjing Tian, Run Zhang, Xiance Liu, Hai Liu, Fuping Zhao, Zhenhua Xue, Lixian Wang, Xitao Jing, Longchao Zhang. Integrative analysis of genome-wide association study and transcriptomics to identify potential candidate genes influencing drip loss in Beijing Black pigs. Animal Research and One Health, 2024, 2(4): 446-457 DOI:10.1002/aro2.32

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bertram, H. C., & Andersen, H. J. (2007). NMR and the water-holding issue of pork. Journal of Animal Breeding and Genetics, 124(Suppl 1), 35–42.

[2]

Otto, G., Roehe, R., Looft, H., Thoelking, L., & Kalm, E. (2004). Comparison of different methods for determination of drip loss and their relationships to meat quality and carcass characteristics in pigs. Meat Science, 68(3), 401–409.

[3]

Xu, D., Wang, Y., Jiao, N., Qiu, K., Zhang, X., Wang, L., Wang, L., & Yin, J. (2020). The coordination of dietary valine and isoleucine on water holding capacity, pH value and protein solubility of fresh meat in finishing pigs. Meat Science, 163, 108074.

[4]

Niu, N., Wang, H., Shi, G., Liu, X., Liu, H., Liu, Q., Yang, M., Wang, L., & Zhang, L. (2021). Genome scanning reveals novel candidate genes for vertebral and teat number in the Beijing Black Pig. Animal Genetics, 52(5), 734–738.

[5]

Jennen, D. G., Brings, A. D., Liu, G., Jüngst, H., Tholen, E., Jonas, E., Tesfaye, D., Schellander, K., & Phatsara, C. (2007). Genetic aspects concerning drip loss and water-holding capacity of porcine meat. Journal of Animal Breeding and Genetics, 124(Suppl 1), 2–11.

[6]

Welzenbach, J., Neuhoff, C., Heidt, H., Cinar, M., Looft, C., Schellander, K., Tholen, E., & Große-Brinkhaus, C. (2016). Integrative analysis of metabolomic, proteomic and genomic data to reveal functional pathways and candidate genes for drip loss in pigs. International Journal of Molecular Sciences, 17(9), 1426.

[7]

Huff-Lonergan, E., & Lonergan, S. M. (2005). Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Science, 71(1), 194–204.

[8]

Huff-Lonergan, E., & Lonergan, S. M. (2007). New frontiers in understanding drip loss in pork: Recent insights on the role of postmortem muscle biochemistry. Journal of Animal Breeding and Genetics, 124(Suppl 1), 19–26.

[9]

Luo, W., Cheng, D., Chen, S., Wang, L., Li, Y., Ma, X., Song, X., Liu, X., Li, W., Liang, J., Yan, H., Zhao, K., Wang, C., Wang, L., & Zhang, L. (2012). Genome-wide association analysis of meat quality traits in a porcine large white x Minzhu intercross population. International Journal of Biological Sciences, 8(4), 580–595.

[10]

Jang, D., Yoon, J., Taye, M., Lee, W., Kwon, T., Shim, S., & Kim, H. (2018). Multivariate genome-wide association studies on tenderness of Berkshire and Duroc pig breeds. Genes Genomics, 40(7), 701–705.

[11]

Turley, P., Walters, R. K., Maghzian, O., Okbay, A., Lee, J. J., Fontana, M. A., Nguyen-Viet, T. A., Wedow, R., Zacher, M., Furlotte, N. A., Magnusson, P., Oskarsson, S., Johannesson, M., Visscher, P. M., Laibson, D., Cesarini, D., Neale, B. M., & Benjamin, D. J. (2018). Multi-trait analysis of genome-wide association summary statistics using MTAG. Nature Genetics, 50(2), 229–237.

[12]

Liu, X., Zhang, J., Xiong, X., Chen, C., Xing, Y., Duan, Y., Xiao, S., Yang, B., & Ma, J. (2021). An integrative analysis of transcriptome and GWAS data to identify potential candidate genes influencing meat quality traits in pigs. Frontiers in Genetics, 12, 748070.

[13]

Taşan, M., Musso, G., Hao, T., Vidal, M., MacRae, C. A., & Roth, F. P. (2014). Selecting causal genes from genome-wide association studies via functionally coherent subnetworks. Nature Methods, 12(2), 154–159.

[14]

Carmelo, V. A. O., & Kadarmideen, H. N. (2020). Genetic variations (eQTLs) in muscle transcriptome and mitochondrial genes, and trans-eQTL molecular pathways in feed efficiency from Danish breeding pigs. PLoS One, 15(9), e0239143.

[15]

Zhou, X., & Stephens, M. (2012). Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 44(7), 821–824.

[16]

Turner, S. D. (2018). qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. Journal of Open Source Software, 3(25), 731.

[17]

Gao, H., Zhang, L., Wang, L., Liu, X., Hou, X., Zhao, F., Yan, H., & Wang, L. (2020). Liver transcriptome profiling and functional analysis of intrauterine growth restriction (IUGR) piglets reveals a genetic correction and sexual-dimorphic gene expression during postnatal development. BMC Genomics, 21(1), 701.

[18]

Zhao, X., Wang, C., Wang, Y., Lin, H., Wang, H., Hu, H., & Wang, J. (2019). Comparative gene expression profiling of muscle reveals potential candidate genes affecting drip loss in pork. BMC Genetics, 20(1), 89.

[19]

Tian, D., Wang, P., Tang, B., Teng, X., Li, C., Liu, X., Zou, D., Song, S., & Zhang, Z. (2020). GWAS atlas: A curated resource of genome-wide variant-trait associations in plants and animals. Nucleic Acids Research, 48(D1), D927–D932.

[20]

Porter, H. F., & O’Reilly, P. F. (2017). Multivariate simulation framework reveals performance of multi-trait GWAS methods. Scientific Reports, 7(1), 38837.

[21]

Zhang, Y., Zagnitko, O., Rodionova, I., Osterman, A., & Godzik, A. (2011). The FGGY carbohydrate kinase family: Insights into the evolution of functional specificities. PLoS Computational Biology, 7(12), e1002318.

[22]

Van Es, M. A., Van Vught, P., Veldink, J., Andersen, P., Birve, A., Lemmens, R., Cronin, S., Van Der Kooi, A., Visser, M., Schelhaas, H., Hardiman, O., Ragoussis, I., Lambrechts, D., Robberecht, W., Wokke, J., Ophoff, R., & Van Den Berg, L. (2009). Analysis of FGGY as a risk factor for sporadic amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis, 10(5–6), 441–447.

[23]

Santana, M. H., Utsunomiya, Y., Neves, H., Gomes, R., Garcia, J., Fukumasu, H., Silva, S., Leme, P., Coutinho, L., Eler, J., & Ferraz, J. (2014). Genome-wide association study for feedlot average daily gain in Nellore cattle (Bos indicus). Journal of Animal Breeding and Genetics, 131(3), 210–216.

[24]

Smith, A. L., Gjoka, E., Izhar, M., Novo, K. J., Mason, B. C., De Las Casas, A., & Waddell, D. S. (2021). FGGY carbohydrate kinase domain containing is expressed and alternatively spliced in skeletal muscle and attenuates MAP kinase and Akt signaling. Gene, 800, 145836.

[25]

Chen, G., Cheng, X., Shi, G., Zou, C., Chen, L., Li, J., Li, M., Fang, C., & Li, C. (2019). Transcriptome analysis reveals the effect of long intergenic noncoding RNAs on pig muscle growth and fat deposition. BioMed Research International, 2019, 2951427.

[26]

Chauhan, S. S., & England, E. M. (2018). Postmortem glycolysis and glycogenolysis: Insights from species comparisons. Meat Science, 144, 118–126.

[27]

Matarneh, S. K., Beline, M., de Luz e Silva, S., Shi, H., & Gerrard, D. E. (2018). Mitochondrial F(1)-ATPase extends glycolysis and pH decline in an in vitro model. Meat Science, 137, 85–91.

[28]

Nikiforov, A., Dölle, C., Niere, M., & Ziegler, M. (2011). Pathways and subcellular compartmentation of NAD biosynthesis in human cells: From entry of extracellular precursors to mitochondrial NAD generation. Journal of Biological Chemistry, 286(24), 21767–21778.

[29]

Yamamoto, M., Hikosaka, K., Mahmood, A., Tobe, K., Shojaku, H., Inohara, H., & Nakagawa, T. (2016). Nmnat3 is dispensable in mitochondrial NAD level maintenance in vivo. PLoS One, 11(1), e0147037.

[30]

Crisol, B. M., Veiga, C. B., Braga, R. R., Lenhare, L., Baptista, I. L., Gaspar, R. C., Muñoz, V. R., Cordeiro, A. V., da Silva, A. S. R., Cintra, D. E., Moura, L. P., Pauli, J. R., & Ropelle, E. R. (2020). NAD(+) precursor increases aerobic performance in mice. European Journal of Nutrition, 59(6), 2427–2437.

[31]

Petit, M. M., Schoenmakers, E. F., Huysmans, C., Geurts, J. M., Mandahl, N., & Van de Ven, W. J. (1999). LHFP, a novel translocation partner gene of HMGIC in a lipoma, is a member of a new family of LHFP-like genes. Genomics, 57(3), 438–441.

[32]

Xu, L., Yang, L., Wang, L., Zhu, B., Chen, Y., Gao, H., Gao, X., Zhang, L., Liu, G. E., & Li, J. (2019). Probe-based association analysis identifies several deletions associated with average daily gain in beef cattle. BMC Genomics, 20(1), 31.

[33]

Olkkonen, V. M., & Li, S. (2013). Oxysterol-binding proteins: Sterol and phosphoinositide sensors coordinating transport, signaling and metabolism. Progress in Lipid Research, 52(4), 529–538.

[34]

Johansson, M., Lehto, M., Tanhuanpää K., Cover, T. L., & Olkkonen, V. M. (2005). The oxysterol-binding protein homologue ORP1L interacts with Rab7 and alters functional properties of late endocytic compartments. Molecular Biology of the Cell, 16(12), 5480–5492.

[35]

Motazacker, M. M., Pirhonen, J., van Capelleveen, J. C., Weber-Boyvat, M., Kuivenhoven, J. A., Shah, S., Hovingh, G. K., Metso, J., Li, S., Ikonen, E., Jauhiainen, M., Dallinga-Thie, G. M., & Olkkonen, V. M. (2016). A loss-of-function variant in OSBPL1A predisposes to low plasma HDL cholesterol levels and impaired cholesterol efflux capacity. Atherosclerosis, 249, 140–147.

[36]

Tatiyaborworntham, N., Oz, F., Richards, M. P., & Wu, H. (2022). Paradoxical effects of lipolysis on the lipid oxidation in meat and meat products. Food Chemistry, 14, 100317.

[37]

Straadt, I. K., Rasmussen, M., Young, J. F., & Bertram, H. C. (2008). Any link between integrin degradation and water-holding capacity in pork? Meat Science, 80(3), 722–727.

[38]

Di Luca, A., Hamill, R. M., Mullen, A. M., Slavov, N., & Elia, G. (2016). Comparative proteomic profiling of divergent phenotypes for water holding capacity across the post mortem ageing period in porcine muscle exudate. PLoS One, 11(3), e0150605.

[39]

Gross, D. N., van den Heuvel, A. P., & Birnbaum, M. J. (2008). The role of FOXO in the regulation of metabolism. Oncogene, 27(16), 2320–2336.

[40]

Milan, G., Romanello, V., Pescatore, F., Armani, A., Paik, J. H., Frasson, L., Seydel, A., Zhao, J., Abraham, R., Goldberg, A. L., Blaauw, B., DePinho, R. A., & Sandri, M. (2015). Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nature Communications, 6(1), 6670.

[41]

Lee, D., & Goldberg, A. L. (2013). SIRT1 protein, by blocking the activities of transcription factors FoxO1 and FoxO3, inhibits muscle atrophy and promotes muscle growth. Journal of Biological Chemistry, 288(42), 30515–30526.

[42]

Kamei, Y., Miura, S., Suzuki, M., Kai, Y., Mizukami, J., Taniguchi, T., Mochida, K., Hata, T., Matsuda, J., Aburatani, H., Nishino, I., & Ezaki, O. (2004). Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. Journal of Biological Chemistry, 279(39), 41114–41123.

[43]

Koubek, E. J., & Santy, L. C. (2022). Actin up: An overview of the rac GEF Dock1/Dock180 and its role in cytoskeleton rearrangement. Cells, 11(22), 3565.

RIGHTS & PERMISSIONS

2023 The Authors. Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/