Integration of multiomics data identifies candidate genes influencing pH levels in Beijing Black pigs

Jingjing Tian , Naiqi Niu , Xiaoqing Wang , Liangyu Shi , Liyu Yang , Mianyan Li , Lijun Shi , Xin Liu , Hongmei Gao , Xinhua Hou , Ligang Wang , Lixian Wang , Longchao Zhang , Fuping Zhao

Animal Research and One Health ›› 2024, Vol. 2 ›› Issue (3) : 260 -272.

PDF
Animal Research and One Health ›› 2024, Vol. 2 ›› Issue (3) : 260 -272. DOI: 10.1002/aro2.26
ARTICLE

Integration of multiomics data identifies candidate genes influencing pH levels in Beijing Black pigs

Author information +
History +
PDF

Abstract

pH value is a crucial index used to evaluate pork quality due to its direct impact on specific meat characteristics. This study investigated the genetic mechanisms influencing pH values through measurements taken from the longissimus dorsi muscle of Beijing Black pigs at 2 h (pH2h) and 24 h (pH24h) postmortem. A total of 614 Beijing Black pigs were subsequently genotyped using the Illumina Porcine 50K SNP Chip. Heritability estimates for pH2h and pH24h were found to be 0.19 and 0.25, respectively, with a genetic correlation of 0.53. Furthermore, we conducted both a genome-wide association study (GWAS) and an RNA sequencing (RNA-seq) analysis, the latter of which identified differentially expressed genes (DEGs) between high and low pH groups. We identified 31, 6, and 32 single-nucleotide polymorphisms in the pH2h, pH24h, and pH2–24h traits, respectively. The GWAS results revealed the presence of the SYT5 gene in both the pH2h and pH2–24h traits, while the SNX13 gene was simultaneously identified in the pH24h and pH2–24h traits. The RNA-seq results also found SYT5 to be highly expressed, while SNX13 did not exhibit differential expression. Moreover, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses based on the DEGs revealed potential links between pH levels and the glycogen metabolic process as well as associations with the regulation of cell proliferation and calcium ion transmembrane transport. Ultimately, SYT5 and SNX13 emerged as key candidate genes affecting pH values at 2 and 24 h, respectively. These findings contribute to a better understanding of the genetic mechanisms affecting pork quality and safety and offer insights for enhancing meat quality through genetic improvement.

Keywords

Beijing Black pig / genome-wide association study / pH / transcriptome

Cite this article

Download citation ▾
Jingjing Tian, Naiqi Niu, Xiaoqing Wang, Liangyu Shi, Liyu Yang, Mianyan Li, Lijun Shi, Xin Liu, Hongmei Gao, Xinhua Hou, Ligang Wang, Lixian Wang, Longchao Zhang, Fuping Zhao. Integration of multiomics data identifies candidate genes influencing pH levels in Beijing Black pigs. Animal Research and One Health, 2024, 2(3): 260-272 DOI:10.1002/aro2.26

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Davoli, R., Zappaterra, M., & Zambonelli, P. (2019). Genome-wide association study identifies markers associated with meat ultimate pH in Duroc pigs. Animal Genetics, 50(2), 154–156.

[2]

Malek, M., Dekkers, J. C., Lee, H. K., Baas, T. J., Prusa, K., Huff-Lonergan, E., & Rothschild, M. F. (2001). A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. II. Meat and muscle composition. Mammalian Genome, 12(8), 637–645.

[3]

Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550.

[4]

Ma, J., Yang, J., Zhou, L., Zhang, Z., Ma, H., Xie, X., Zhang, F., Xiong, X., Cui, L., Yang, H., Liu, X., Duan, Y., Xiao, S., Ai, H., Ren, J., & Huang, L. (2013). Genome-wide association study of meat quality traits in a White DurocxErhualian F2 intercross and Chinese Sutai pigs. PLoS One, 8(5), e64047.

[5]

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289–300.

[6]

Gao, G., Gao, N., Li, S., Kuang, W., Zhu, L., Jiang, W., Yu, W., Guo, J., Li, Z., Yang, C., & Zhao, Y. (2021). Genome-wide association study of meat quality traits in a three-way crossbred commercial pig population. Frontiers in Genetics, 12, 614087.

[7]

Park, J., Lee, S. M., Park, J. Y., & Na, C. S. (2021). A genome-wide association study (GWAS) for pH value in the meat of Berkshire pigs. Journal of Animal Science and Technology, 63(1), 25–35.

[8]

Verardo, L. L., Sevon-Aimonen, M. L., Serenius, T., Hietakangas, V., & Uimari, P. (2017). Whole-genome association analysis of pork meat pH revealed three significant regions and several potential genes in Finnish Yorkshire pigs. BMC Genetics, 18(1), 13.

[9]

Zhang, L., Wang, L., Li, Y., Li, W., Yan, H., Liu, X., & Zhao, K. (2011). Substitution within erythropoietin receptor gene D1 domain associated with litter size in Beijing Black pig, Sus scrofa. Animal Science Journal, 82(5), 627–632.

[10]

Browning, S. R., & Browning, B. L. (2007). Rapid and accurate haplotype phasing and missing-data inference for whole-genome. D - 0370475. (- 0002-9297). 1084–1097.

[11]

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., de Bakker, P. I., Daly, M. J., & Sham, P. C. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81(3), 559–575.

[12]

Bolormaa, S., Pryce, J. E., Hayes, B. J., & Goddard, M. E. (2010). Multivariate analysis of a genome-wide association study in dairy cattle. 1525–3198.

[13]

Zhou, X., & Stephens, M. (2012). Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 44(7), 821–824.

[14]

Weller, J. I., Song, J. Z., Heyen, D. W., Lewin, H. A., & Ron, M. (1998). A new approach to the problem of multiple comparisons in the genetic dissection of complex traits. Genetics, 150(4), 1699–1706.

[15]

Wang, X., Wang, L., Shi, L., Zhang, P., Li, Y., Li, M., Tian, J., & Zhao, F. (2022). GWAS of reproductive traits in large white pigs on chip and imputed whole-genome sequencing data. International Journal of Molecular Sciences, 23(21), 13338.

[16]

Shiroguchi, K., Jia, T. Z., Sims, P. A., & Xie, X. S. (2012). Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes. Proceedings of the National Academy of Sciences of the United States of America, 109(4), 1347–1352.

[17]

Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357–360.

[18]

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079.

[19]

Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T., & Salzberg, S. L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3), 290–295.

[20]

Te Pas, M. F., Kruijt, L., Pierzchala, M., Crump, R. E., Boeren, S., Keuning, E., Hoving-Bolink, R., Hortós, M., Gispert, M., Arnau, J., Diestre, A., & Mulder, H. A. (2013). Identification of proteomic biomarkers in M. Longissimus dorsi as potential predictors of pork quality. Meat Science, 95(3), 679–687.

[21]

Kim, J. J., Zhao, H. H., Thomsen, H., Rothschild, M. F., & Dekkers, J. C. M. (2005). Combined line-cross and half-sib QTL analysis of crosses between outbred lines. Genetics Research, 85(3), 235–248.

[22]

Ciobanu, D., Bastiaansen, J., Plastow, G., Malek, M., Helm, J., Woollard, J., & Rothschild, M. (2001). Evidence for new alleles in the protein kinase adenosine monophosphate activated y3-subunit gene associated with low glycogen content in pig skeletal muscle and improved meat quality.

[23]

Yoo, C. K., Lim, H. T., Han, S. H., Lee, S. S., Ko, M. S., Kang, T., Lee, J. H., Park, H. B., & Cho, I. C. (2012). QTL analysis of back fat thickness and carcass pH in an F? intercross between Landrace and Korean native pigs. 1573–4978.

[24]

Liu, X., Zhang, J., Xiong, X., Chen, C., Xing, Y., Duan, Y., Xiao, S., Yang, B., & Ma, J. (2021). An integrative analysis of transcriptome and GWAS data to identify potential candidate genes influencing meat quality traits in pigs. Frontiers in Genetics, 12, 748070.

[25]

Duan, Y. Y., Ma, J. W., Yuan, F., Huang, L. B., Yang, K. X., Xie, J. P., & Wu, G. Z. (2009). Genome-wide identification of quantitative trait loci for pork temperature, pH decline, and glycolytic potential in a large-scale White Duroc x Chinese Erhualian resource population. Journal of Animal Science, 87(1), 9–16.

[26]

Korte, A., Vilhjalmsson, B. J., Segura, V., Platt, A., Long, Q., & Nordborg, M. (2012). A mixed-model approach for genome-wide association studies of correlated traits in structured populations. Nature Genetics, 44(9), 1066–1071.

[27]

Ning, C., Wang, D., Zhou, L., Wei, J., Liu, Y., Kang, H., Zhang, S., Zhou, X., & Xu, S. (2019). Efficient multivariate analysis algorithms for longitudinal genome-wide association studies. Bioinformatics, 35(23), 4879–4885.

[28]

Stephens, M. (2013). A unified framework for association analysis with multiple related phenotypes. (1932-6203).

[29]

Moesgaard, B., Quistorff, B., Christensen, V. G., Therkelsen, I., & Jorgensen, P. F. (1995). Differences of post-mortem ATP turnover in skeletal muscle of normal and heterozygote malignant-hyperthermia pigs: Comparison of (31)P-NMR and analytical biochemical measurements. Meat Science, 39(1), 43–57.

[30]

Sahlin, K. (1986). Muscle fatigue and lactic acid accumulation. Acta Physiologica Scandinavica - Supplementum, 556, 83–91.

[31]

Donkervoort, S., Mohassel, P., Laugwitz, L., Zaki, M. S., Kamsteeg, E. J., Maroofian, R., Chao, K. R., Verschuuren-Bemelmans, C. C., Horber, V., Fock, A. J. M., McCarty, R. M., Jain, M. S., Biancavilla, V., McMacken, G., Nalls, M., Voermans, N. C., Elbendary, H. M., Snyder, M., Cai, C., & Bönnemann, C. G. (2020). Biallelic loss of function variants in SYT2 cause a treatable congenital onset presynaptic myasthenic syndrome. American Journal of Medical Genetics. Part A, 182(10), 2272–2283.

[32]

Cho, I. C., Park, H. B., Ahn, J. S., Han, S. H., Lee, J. B., Lim, H. T., Yoo, C. K., Jung, E. J., Kim, D. H., Sun, W. S., Ramayo-Caldas, Y., Kim, S. G., Kang, Y. J., Kim, Y. K., Shin, H. S., Seong, P. N., Hwang, I. S., Park, B. Y., & Hwang, S. (2019). A functional regulatory variant of MYH3 influences muscle fiber-type composition and intramuscular fat content in pigs. PLoS Genetics, 15(10), e1008279.

[33]

Rios, E. (2018). Calcium-induced release of calcium in muscle: 50 years of work and the emerging consensus. The Journal of General Physiology, 150(4), 521–537.

[34]

Watanave, M., Takahashi, N., Hosoi, N., Konno, A., Yamamoto, H., Yasui, H., Kawachi, M., Horii, T., Matsuzaki, Y., Hatada, I., & Hirai, H. (2022). Protein kinase Cgamma in cerebellar Purkinje cells regulates Ca(2+)-activated large-conductance K(+) channels and motor coordination. Proceedings of the National Academy of Sciences of the United States of America, 119(7).

[35]

Moss, F. J., Viard, P., Davies, A., Bertaso, F., Page, K. M., Graham, A., Cantí C., Plumpton, M., Plumpton, C., Clare, J. J., & Dolphin, A. C. (2002). The novel product of a five-exon stargazin-related gene abolishes Ca(V)2.2 calcium channel expression. The EMBO Journal, 21(7), 1514–1523.

[36]

Yang, H., Xu, Z. Y., Lei, M. G., Li, F. E., Deng, C. Y., Xiong, Y. Z., & Zuo, B. (2011). Real-time reverse transcription-PCR expression profiling of porcine troponin I family in three different types of muscles during development. Molecular Biology Reports, 38(2), 827–832.

[37]

Pedersen, H. K., Gudmundsdottir, V., & Brunak, S. (2017). Pancreatic islet protein complexes and their dysregulation in type 2 diabetes. Frontiers in Genetics, 8, 1664–8021.

[38]

Xin, Y., Kim, J., Okamoto, H., Ni, M., Wei, Y., Adler, C., Murphy, A., Yancopoulos, G., Lin, C., & Gromada, J. (2016). RNA sequencing of single human islet cells reveals type 2 diabetes genes. Cell Metabolism, 24(4), 608–615.

[39]

Afuwape, O. A., & Kavalali, E. T. (2016). Imaging synaptic vesicle exocytosis-endocytosis with pH-sensitive fluorescent proteins. Methods in Molecular Biology, 1474(1940-6029), 187–200.

[40]

Flinck, M., Kramer, S. H., & Pedersen, S. F. (2018). Roles of pH in control of cell proliferation. Acta Physiologica, 223(3), e13068.

[41]

Kruse, C. R., Singh, M., Targosinski, S., Sinha, I., Sorensen, J. A., Eriksson, E., & Nuutila, K. (2017). The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: In vitro and in vivo study. Wound Repair and Regeneration, 25(2), 260–269.

[42]

Werner, C., Natter, R., & Wicke, M. (2010). Changes of the activities of glycolytic and oxidative enzymes before and after slaughter in the longissimus muscle of Pietrain and Duroc pigs and a Duroc-Pietrain crossbreed. Journal of Animal Science, 88(12), 4016–4025.

[43]

Scheffler, T. L., & Gerrard, D. E. (2007). Mechanisms controlling pork quality development: The biochemistry controlling postmortem energy metabolism. Meat Science, 77(1), 7–16.

[44]

Thwe, P. M., Pelgrom, L. R., Cooper, R., Beauchamp, S., Reisz, J. A., D’Alessandro, A., Everts, B., & Amiel, E. (2019). Cell-intrinsic glycogen metabolism supports early glycolytic reprogramming required for dendritic cell immune responses. Cell Metabolism, 30(1), 225.

[45]

Ramayo-Caldas, Y., Renand, G., Ballester, M., Saintilan, R., & Rocha, D. (2016). Multi-breed and multi-trait co-association analysis of meat tenderness and other meat quality traits in three French beef cattle breeds. Genetics Selection Evolution, 48(1), 37.

[46]

de Meis, L. (1976). Regulation of steady state level of phosphoenzyme and ATP synthesis in sarcoplasmic reticulum vesicles during reversal of the Ca2+ pump. (0021-9258).

[47]

Devine, C. E., Ellery, S., & Averill, S. (1984). Responses of different types of ox muscle to electrical stimulation. (0309-1740).

[48]

Hamilton, D. N., Miller, K. D., Ellis, M., McKeith, F. K., & Wilson, E. R. (2003). Relationships between longissimus glycolytic potential and swine growth performance, carcass traits, and pork quality. (0021-8812).

RIGHTS & PERMISSIONS

2023 The Authors. Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/