Single nucleotide polymorphisms in the CDH18 gene affect growth traits in Hu sheep

Tianyi Liu , Yazhen Bi , Jingjing Bao , Mingyu Shang , Wenping Hu , Li Zhang

Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (3) : 329 -340.

PDF
Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (3) : 329 -340. DOI: 10.1002/aro2.22
ARTICLE

Single nucleotide polymorphisms in the CDH18 gene affect growth traits in Hu sheep

Author information +
History +
PDF

Abstract

Growth traits are critical economic traits in sheep. Genetic polymorphism has a great influence on the improvement of sheep traits. The aim of this study was to analyze the effect of cadherin 18 (CDH18) gene polymorphisms on growth traits in Hu sheep. The single nucleotide polymorphisms (SNPs) of the CDH18 gene in Hu sheep were identified by Illumina Ovine SNP 50K BeadChip. Five SNPs were screened out within the CDH18 gene, where SNP1 (rs423955510) was located in exon and SNP2 (rs412944692), SNP3 (rs416959317), SNP4 (rs398980439) and SNP5 (rs428685044) were located in intron. The expression of the CDH18 gene in Hu sheep tissue was analyzed using quantitative real-time polymerase chain reaction, and the structure and phylogeny of the gene were analyzed using bioinformatics techniques. The results showed that SNP1, SNP2, SNP4, and SNP5 were significantly associated with body weight and body size (p < 0.05). Meanwhile, there were strong linkage disequilibrium relationships between SNP1 and SNP2 (r2 > 0.33). The CDH18 gene was expressed in the muscle tissues of Hu sheep at different months. The relative expression levels at weaning and 4-month muscle tissue were higher. Bioinformatic analysis revealed that SNP1 existed in the 5′ untranslated regions, which might affect the efficiency of translation. The above findings suggested that these SNP loci might affect growth traits and could be regarded as potential molecular markers for improving the growth performance of Hu sheep, which lay a molecular foundation for the breeding of sheep and accelerate the pace of sheep breeding.

Keywords

CDH18 gene / expression profile / growth traits / sheep / single nucleotide polymorphism

Cite this article

Download citation ▾
Tianyi Liu, Yazhen Bi, Jingjing Bao, Mingyu Shang, Wenping Hu, Li Zhang. Single nucleotide polymorphisms in the CDH18 gene affect growth traits in Hu sheep. Animal Research and One Health, 2025, 3(3): 329-340 DOI:10.1002/aro2.22

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li, F., Wan, B., & Li, X.Q. (2022). Expression profile and prognostic values of CDH family members in lung adenocarcinoma. Disease Markers, 2022, 9644466. https://doi.org/10.1155/2022/9644466

[2]

Shibata, T., Shimoyama, Y., Gotoh, M., & Hirohashi, S. (1997). Identification of human cadherin-14, a novel neurally specific type II cadherin, by protein interaction cloning. Journal of Biological Chemistry, 272(8), 5236-5240. https://doi.org/10.1074/jbc.272.8.5236

[3]

Bai, Y.H., Zhan, Y.B., Yu, B., Wang, W.W., Wang, L., Zhou, J.Q., Chen, R.K., Zhang, F.J., Zhao, X.W., Duan, W.C., Wang, Y.M., Liu, J., Bao, J.J., Zhang, Z.Y., & Liu, X.Z. (2018). A novel tumor-suppressor, CDH18, inhibits glioma cell invasiveness via UQCRC2 and correlates with the prognosis of glioma patients. Cellular Physiology and Biochemistry, 48(4), 1755-1770. https://doi.org/10.1159/000492317

[4]

Polanco, J., Reyes-Vigil, F., Weisberg, S.D., Dhimitruka, I., & Brusés, J.L. (2021). Differential spatiotemporal expression of type I and type II cadherins associated with the segmentation of the central nervous system and formation of brain nuclei in the developing mouse. Frontiers in Molecular Neuroscience, 14, 633719. https://doi.org/10.3389/fnmol.2021.633719

[5]

Redies, C., Hertel, N., & Hübner, C.A. (2012). Cadherins and neuropsychiatric disorders. Brain Research, 1470, 130-144. https://doi.org/10.1016/j.brainres.2012.06.020

[6]

Zhang, D., Zhao, J., Han, C., Liu, X., Liu, J., & Yang, H. (2020). Identification of hub genes related to prognosis in glioma. Bioscience Reports, 40(5). https://doi.org/10.1042/bsr20193377

[7]

Zhang, Y., Kent, J.W., Jr., Olivier, M., Ali, O., Cerjak, D., Broeckel, U., Abdou, R.M., Dyer, T.D., Comuzzie, A., Curran, J.E., Carless, M.A., Rainwater, D.L., Göring, H.H., Blangero, J., & Kissebah, A.H. (2013). A comprehensive analysis of adiponectin QTLs using SNP association, SNP cis-effects on peripheral blood gene expression and gene expression correlation identified novel metabolic syndrome (MetS) genes with potential role in carcinogenesis and systemic inflammation. BMC Medical Genomics, 6(1), 14. https://doi.org/10.1186/1755-8794-6-14

[8]

Wilson, C.L., Liu, W., Yang, J.J., Kang, G., Ojha, R.P., Neale, G.A., Srivastava, D.K., Gurney, J.G., Hudson, M.M., Robison, L.L., & Ness, K.K. (2015). Genetic and clinical factors associated with obesity among adult survivors of childhood cancer: A report from the St. Jude Lifetime Cohort. Cancer, 121(13), 2262-2270. https://doi.org/10.1002/cncr.29153

[9]

Schlicht, K., Nyczka, P., Caliebe, A., Freitag-Wolf, S., Claringbould, A., Franke, L., Võsa, U., Kardia, S. L.R., Smith, J.A., Zhao, W., Gieger, C., Peters, A., Prokisch, H., Strauch, K., Baurecht, H., Weidinger, S., Rosenstiel, P., Hütt, M.T., Knecht, C., Szymczak, S., & Krawczak, M. (2019). The metabolic network coherence of human transcriptomes is associated with genetic variation at the cadherin 18 locus. Human Genetics, 138(4), 375-388. https://doi.org/10.1007/s00439-019-01994-x

[10]

Hu, W.P., Liu, M.Q., Tian, Z.L., Liu, Q.Y., Zhang, Z.B., Tang, J.S., He, X.Y., Zhu, Y.Y., Wang, Y.Y., & Chu, M.X. (2021). Polymorphism, expression and structure analysis of key genes in the ovarian steroidogenesis pathway in sheep (Ovis aries). Veterinary Medicine and Science, 7(4), 1303-1315. https://doi.org/10.1002/vms3.485

[11]

Zhang, R., Pavan, E., Ross, A.B., Deb-Choudhury, S., Dixit, Y., Mungure, T.E., Realini, C.E., Cao, M., & Farouk, M.M. (2023). Molecular insights into quality and authentication of sheep meat from proteomics and metabolomics. Journal of Proteomics, 276, 104836. https://doi.org/10.1016/j.jprot.2023.104836

[12]

Cheng, J., Wang, W., Zhang, D., Zhang, Y., Li, X., Zhao, Y., Xu, D., Zhao, L., Li, W., Wang, J., Zhou, B., Lin, C., Yang, X., & Zhang, X. (2022). Identification of polymorphic loci in OSMR and GHR genes and analysis of their association with growth traits in sheep. Animal Biotechnology, 1-8. https://doi.org/10.1080/10495398.2022.2105227

[13]

Fan, B., Du, Z., Gorbach, D.M., & Rothschild, M.F. (2010). Development and application of high-density SNP arrays in genomic studies of domestic animals. Asian-Australasian Journal of Animal Sciences, 23(7), 833-847. https://doi.org/10.5713/ajas.2010.r.03

[14]

Abousoliman, I., Reyer, H., Oster, M., Murani, E., Mohamed, I., & Wimmers, K. (2021). Genome-wide analysis for early growth-related traits of the locally adapted Egyptian Barki sheep. Genes, 12(8), 1243. https://doi.org/10.3390/genes12081243

[15]

Osman, N.M., Shafey, H.I., Abdelhafez, M.A., Sallam, A.M., & Mahrous, K.F. (2021). Genetic variations in the Myostatin gene affecting growth traits in sheep. Veterinary World, 14(2), 475-482. https://doi.org/10.14202/vetworld.2021.475-482

[16]

Jia, C., Li, C., Fu, D., Chu, M., Zan, L., Wang, H., Liang, C., & Yan, P. (2020). Identification of genetic loci associated with growth traits at weaning in yak through a genome-wide association study. Animal Genetics, 51(2), 300-305. https://doi.org/10.1111/age.12897

[17]

Emrani, H., Masoudi, A.A., Vaez Torshizi, R., & Ehsani, A. (2020). Genome-wide association study of shank length and diameter at different developmental stages in chicken F2 resource population. Animal Genetics, 51(5), 722-730. https://doi.org/10.1111/age.12981

[18]

Zhang, R., Große-Brinkhaus, C., Heidt, H., Uddin, M.J., Cinar, M.U., Tesfaye, D., Tholen, E., Looft, C., Schellander, K., & Neuhoff, C. (2015). Polymorphisms and expression analysis of SOX-6 in relation to porcine growth, carcass, and meat quality traits. Meat Science, 107, 26-32. https://doi.org/10.1016/j.meatsci.2015.04.007

[19]

Ma, S., Ji, X., Cang, M., Wang, J., Yu, H., Liu, Y., Zhang, W., Wu, Y., Zhao, S., Cao, G., & Tong, B. (2022). Association analysis between novel variants in LEPR gene and litter size in Mongolia and ujimqin sheep breeds. Theriogenology, 183, 79-89. https://doi.org/10.1016/j.theriogenology.2022.02.014

[20]

Gholizadeh, M., Rahimi-Mianji, G., & Nejati-Javaremi, A. (2015). Genomewide association study of body weight traits in Baluchi sheep. Journal of Genetics, 94(1), 143-146. https://doi.org/10.1007/s12041-015-0469-1

[21]

Marees, A.T., de Kluiver, H., Stringer, S., Vorspan, F., Curis, E., Marie-Claire, C., & Derks, E.M. (2018). A tutorial on conducting genome-wide association studies: Quality control and statistical analysis. International Journal of Methods in Psychiatric Research, 27(2), e1608. https://doi.org/10.1002/mpr.1608

[22]

Zhang, H., Wang, Y., & Lu, J. (2019). Function and evolution of upstream ORFs in eukaryotes. Trends in Biochemical Sciences, 44(9), 782-794. https://doi.org/10.1016/j.tibs.2019.03.002

[23]

Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13), 3406-3415. https://doi.org/10.1093/nar/gkg595

[24]

Pan, X., J. Zhao, Z. Zhou, J. Chen, Z. Yang, Y. Wu, M. Bai, Y. Jiao, Y. Yang, X. Hu, T. Cheng, Q. Lu, B. Wang, C. L. Li, Y. J. Lu, L. Diao, Y. Q. Zhong, J. Pan, J. Zhu, … X. Zhang. 2021. 5'-UTR SNP of FGF13 causes translational defect and intellectual disability. Elife10. https://doi.org/10.7554/eLife.63021

[25]

Yousuf, S., Li, A., Feng, H., Lui, T., Huang, W., Zhang, X., Xie, L., & Miao, X. (2022). Genome-wide expression profiling and networking reveals an imperative role of IMF-associated novel CircRNAs as ceRNA in pigs. Cells, 11(17), 2638. https://doi.org/10.3390/cells11172638

[26]

Livak, K.J., & Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.), 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262

[27]

Nei, M., & Roychoudhury, A.K. (1974). Sampling variances of heterozygosity and genetic distance. Genetics, 76(2), 379-390. https://doi.org/10.1093/genetics/76.2.379

[28]

Jiang, J., Cao, Y., Shan, H., Wu, J., Song, X., & Jiang, Y. (2021). The GWAS analysis of body size and population verification of related SNPs in Hu sheep. Frontiers in Genetics, 12, 642552. https://doi.org/10.3389/fgene.2021.642552

[29]

Cao, Y., Song, X., Shan, H., Jiang, J., Xiong, P., Wu, J., Shi, F., & Jiang, Y. (2020). Genome-wide association study of body weights in Hu sheep and population verification of related single-nucleotide polymorphisms. Frontiers in Genetics, 11, 588. https://doi.org/10.3389/fgene.2020.00588

[30]

Sweet-Jones, J., Lenis, V.P., Yurchenko, A.A., Yudin, N.S., Swain, M., & Larkin, D.M. (2021). Genotyping and whole-genome resequencing of Welsh sheep breeds reveal candidate genes and variants for adaptation to local environment and socioeconomic traits. Frontiers in Genetics, 12, 612492. https://doi.org/10.3389/fgene.2021.612492

[31]

Wu, N.N., Zhao, D., Ma, W., Lang, J.N., Liu, S.M., Fu, Y., Wang, X., Wang, Z.W., & Li, Q. (2021). A genome-wide association study of gestational diabetes mellitus in Chinese women. Journal of Maternal-Fetal and Neonatal Medicine, 34(10), 1557-1564. https://doi.org/10.1080/14767058.2019.1640205

[32]

Santiago, G.G., Siqueira, F., Cardoso, F.F., Regitano, L. C.A., Ventura, R., Sollero, B.P., Souza, M.D., Mokry, F.B., Ferreira, A. B.R., & Torres, R. A.A. (2017). Genomewide association study for production and meat quality traits in Canchim beef cattle. Journal of Animal Science, 95(8), 3381-3390. https://doi.org/10.2527/jas.2017.1570

[33]

Junghof, J., Kogure, Y., Yu, T., Verdugo-Sivianes, E.M., Narita, M., Lucena-Cacace, A., & Yoshida, Y. (2022). CDH18 is a fetal epicardial biomarker regulating differentiation towards vascular smooth muscle cells. NPJ Regenerative Medicine, 7(1), 14. https://doi.org/10.1038/s41536-022-00207-w

RIGHTS & PERMISSIONS

2023 The Authors. Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

39

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/