Cattle Genomics: Aurochs Admixture in East Asia

James A. Ward , David E. MacHugh

Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (3) : 341 -343.

PDF
Animal Research and One Health ›› 2025, Vol. 3 ›› Issue (3) : 341 -343. DOI: 10.1002/aro2.102
COMMENTARY

Cattle Genomics: Aurochs Admixture in East Asia

Author information +
History +
PDF

Cite this article

Download citation ▾
James A. Ward, David E. MacHugh. Cattle Genomics: Aurochs Admixture in East Asia. Animal Research and One Health, 2025, 3(3): 341-343 DOI:10.1002/aro2.102

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. A. F. Frantz, D. G. Bradley, G. Larson, and L. Orlando, “Animal Domestication in the Era of Ancient Genomics,” Nature Reviews Genetics21, no. 8 (2020): 449-460, https://doi.org/10.1038/s41576-020-0225-0.

[2]

G. P. McHugo, M. J. Dover, and D. E. MacHugh, “Unlocking the Origins and Biology of Domestic Animals Using Ancient DNA and Paleogenomics,” BMC Biology17, no. 1 (2019): 98, https://doi.org/10.1186/s12915-019-0724-7.

[3]

S. Chen, L. Ren, Y. Gao, et al. “Evidence of Hybridization of Cattle and Aurochs on the Tibetan Plateau ∼3750 Years Ago,” Science Bulletin69, no. 18 (2024): 2825-2828, https://doi.org/10.1016/j.scib.2024.06.035.

[4]

C. Rossi, M. S. Sinding, V. E. Mullin, et al. “The Genomic Natural History of the Aurochs,” Nature635, no. 8037 (2024): 136-141, https://doi.org/10.1038/s41586-024-08112-6.

[5]

T. Günther, J. Chisausky, M. Á Galindo-Pellicena, et al. “The Genomic Legacy of Human Management and Sex-Biased Aurochs Hybridization in Iberian Cattle,” Elife (2024), https://doi.org/10.7554/eLife.93076.1.

[6]

S. D. Park, D. A. Magee, P. A. McGettigan, et al. “Genome Sequencing of the Extinct Eurasian Wild Aurochs, Bos Primigenius, Illuminates the Phylogeography and Evolution of Cattle,” Genome Biology16, no. 1 (2015): 234, https://doi.org/10.1186/s13059-015-0790-2.

[7]

M. P. Verdugo, V. E. Mullin, A. Scheu, et al. “Ancient Cattle Genomics, Origins, and Rapid Turnover in the Fertile Crescent,” Science365, no. 6449 (2019): 173-176, https://doi.org/10.1126/science.aav1002.

[8]

J. F. Bailey, M. B. Richards, V. A. Macaulay, et al. “Ancient DNA Suggests a Recent Expansion of European Cattle From a Diverse Wild Progenitor Species,” Proceedings of the Royal Society B: Biological Sciences263, no. 1376 (1996): 1467-1473, https://doi.org/10.1098/rspb.1996.0214.

[9]

D. G. Bradley, D. E. MacHugh, P. Cunningham, and R. T. Loftus, “Mitochondrial Diversity and the Origins of African and European Cattle,” Proceedings of the National Academy of Sciences of the United States of America93, no. 10 (1996): 5131-5135, https://doi.org/10.1073/pnas.93.10.5131.

[10]

C. S. Troy, D. E. MacHugh, J. F. Bailey, et al. “Genetic Evidence for Near-Eastern Origins of European Cattle,” Nature410, no. 6832 (2001): 1088-1091, https://doi.org/10.1038/35074088.

[11]

A. Bergstrom, C. Stringer, M. Hajdinjak, E. M. L. Scerri, and P. Skoglund, “Origins of Modern Human Ancestry,” Nature590, no. 7845 (2021): 229-237, https://doi.org/10.1038/s41586-021-03244-5.

[12]

J. Hou, X. Guan, X. Xia, et al. “Evolution and Legacy of East Asian Aurochs,” Science Bulletin69, no. 21 (2024): 3425-3433, https://doi.org/10.1016/j.scib.2024.09.016.

[13]

N. Chen, Y. Cai, Q. Chen, et al. “Whole-Genome Resequencing Reveals World-Wide Ancestry and Adaptive Introgression Events of Domesticated Cattle in East Asia,” Nature Communications9, no. 1 (2018): 2337, https://doi.org/10.1038/s41467-018-04737-0.

[14]

N. F. Zhang, Q. Y. Liang, X. Y. Shao, et al. “Ancient Cattle DNA Provides Novel Insight Into the Subsistence Mode Transition From the Late Neolithic to Bronze Age in the Nenjiang River Basin,” J Archaeol Sci Rep51 (2023): 104136, https://doi.org/10.1016/j.jasrep.2023.104136.

[15]

E. T. Chevy, E. Huerta-Sanchez, and S. Ramachandran, “Integrating Sex-Bias Into Studies of Archaic Introgression on Chromosome X,” PLoS Genetics19, no. 8 (2023): e1010399, https://doi.org/10.1371/journal.pgen.1010399.

[16]

L. A. Frantz, J. G. Schraiber, O. Madsen, et al. “Evidence of Long-Term Gene Flow and Selection During Domestication From Analyses of Eurasian Wild and Domestic Pig Genomes,” Nature Genetics47, no. 10 (2015): 1141-1148, https://doi.org/10.1038/ng.3394.

[17]

B. Miao, Z. Wang, and Y. Li, “Genomic Analysis Reveals Hypoxia Adaptation in the Tibetan Mastiff by Introgression of the Gray Wolf From the Tibetan Plateau,” Molecular Biology and Evolution34, no. 3 (2017): 734-743, https://doi.org/10.1093/molbev/msw274.

[18]

R. A. Lawal, S. H. Martin, K. Vanmechelen, et al. “The Wild Species Genome Ancestry of Domestic Chickens,” BMC Biology18, no. 1 (2020): 13, https://doi.org/10.1186/s12915-020-0738-1.

[19]

Z. Zheng, X. Wang, M. Li, et al. “The Origin of Domestication Genes in Goats,” Science Advances6, no. 21 (2020): eaaz5216, https://doi.org/10.1126/sciadv.aaz5216.

[20]

Y. H. Cao, S. S. Xu, M. Shen, et al. “Historical Introgression From Wild Relatives Enhanced Climatic Adaptation and Resistance to Pneumonia in Sheep,” Molecular Biology and Evolution38, no. 3 (2021): 838-855, https://doi.org/10.1093/molbev/msaa236

[21]

H. E. Jones and P. B. Wilson, “Progress and Opportunities Through Use of Genomics in Animal Production,” Trends in Genetics38, no. 12 (2022): 1228-1252, https://doi.org/10.1016/j.tig.2022.06.014.

RIGHTS & PERMISSIONS

2025 The Author(s). Animal Research and One Health published by John Wiley & Sons Australia, Ltd on behalf of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

AI Summary AI Mindmap
PDF

64

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/