Insights into Cripto-1 as a target for cancer diagnosis and treatment: A mini-review

Zhengkun Gao , Qian Li , Ran Zheng , Jing Si , Bing Wang , Lu Gan

Advances in Radiotherapy & Nuclear Medicine ›› 2025, Vol. 3 ›› Issue (3) : 83 -93.

PDF
Advances in Radiotherapy & Nuclear Medicine ›› 2025, Vol. 3 ›› Issue (3) :83 -93. DOI: 10.36922/ARNM025130015
MINI-REVIEW
research-article

Insights into Cripto-1 as a target for cancer diagnosis and treatment: A mini-review

Author information +
History +
PDF

Abstract

Cripto-1, a glycoprotein and key member of the epidermal growth factor-Cripto-1-FRL-1-Cryptic family, has garnered significant attention in cancer research due to its dual roles in embryonic development and tumor progression. The central role of Cripto-1 in regulating signaling pathways that govern cell behavior positions it as a promising target for enhancing diagnostic precision and therapeutic efficacy in cancer management. This mini-review explores the role of Cripto-1 in cancer biology, focusing on its involvement in key oncogenic pathways such as cell proliferation, migration, angiogenesis, and the maintenance of cancer stem cells (CSCs). Cripto-1 supports CSC self-renewal and contributes to treatment resistance. The review also examines recent advances in Cripto-1-targeted therapy, including monoclonal antibodies, small molecule inhibitors, and early-phase clinical trials, highlighting their therapeutic efficacy and safety profile. By synthesizing these findings, this review offers a comprehensive understanding of Cripto-1’s clinical relevance and provides new insights into its potential to improve diagnostic accuracy and therapeutic outcomes in cancer management.

Keywords

Cripto-1 / Cancer / Diagnostic biomarker / Treatment target / Cancer stem cells

Cite this article

Download citation ▾
Zhengkun Gao, Qian Li, Ran Zheng, Jing Si, Bing Wang, Lu Gan. Insights into Cripto-1 as a target for cancer diagnosis and treatment: A mini-review. Advances in Radiotherapy & Nuclear Medicine, 2025, 3(3): 83-93 DOI:10.36922/ARNM025130015

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. CA Cancer J Clin. 2025; 75(1):10-45. doi: 10.3322/caac.21871

[2]

Alam MJ, Takahashi R, Afify SM, et al. Exogenous cripto-1 suppresses self-renewal of cancer stem cell model. Int J Mol Sci. 2018; 19(11):3345. doi: 10.3390/ijms19113345

[3]

Dela Cruz JM, Roessler E, Bamford RN, et al. Loss-of-function mutation in the CFC domain of TDGF-1 is associated with human forebrain defects. Am J Hum Genet. 2001; 69(4):343-343.

[4]

Saccone S, Rapisarda A, Motta S, Dono R, Persico GM, Dellavalle G. Regional localization of the human Egf-Like growth-factor cripto gene (Tdgf-1) to chromosome 3p21. Hum Genet. 1995; 95(2):229-230. doi: 10.1007/Bf00209409

[5]

Watanabe K, Hamada S, Bianco C, et al. Requirement of Glycosylphosphatidylinositol anchor of cripto-1 for activity as a nodal co-receptor. J Biol Chem. 2007; 282(49):35772-35786. doi: 10.1074/jbc.M707351200

[6]

Colas JF, Schoenwolf GC. Subtractive hybridization identifies chick-cripto, a novel EGF-CFC ortholog expressed during gastrulation, neurulation and early cardiogenesis. Gene. 2000; 255(2):205-217. doi: 10.1016/S0378-1119(00)00337-1

[7]

Iaccarino E, Sandomenico A, Corvino G, et al. Investigating the oxidative refolding mechanism of Cripto-1 CFC domain. Int J Biol Macromol. 2019; 137:1179-1189. doi: 10.1016/j.ijbiomac.2019.07.040

[8]

Foley SF, Van Vlijmen HWT, Boynton RE, et al. The CRIPTO/FRL-1/CRYPTIC (CFC) domain of human cripto. Functional and structural insights through disulfide structure analysis. Eur J Biochem. 2003; 270(17):3610-3618. doi: 10.1046/j.1432-1033.2003.03749.x

[9]

Dono R, Scalera L, Pacifico F, Acampora D, Persico MG, Simeone A. The murine cripto gene: Expression during mesoderm induction and early heart morphogenesis. Development. 1993; 118(4):1157-1168. doi: 10.1242/dev.118.4.1157

[10]

Ishii H, Afify SM, Hassan G, Salomon DS, Seno M. Cripto-1 as a potential target of cancer stem cells for immunotherapy. Cancers (Basel). 2021; 13(10):2491. doi: 10.3390/cancers13102491

[11]

Rangel MC, Karasawa H, Castro NP, Nagaoka T, Salomon DS, Bianco C. Role of Cripto-1 during epithelial-to-mesenchymal transition in development and cancer. Am J Pathol. 2012; 180(6):2188-2200. doi: 10.1016/j.ajpath.2012.02.031

[12]

Chu KY, Crawford AN, Krah BS, et al. Cripto-1 acts as a molecular bridge linking nodal to ALK 4 via distinct structural domains. Protein Sci. 2025; 34(2):e70034. doi: 10.1002/pro.70034

[13]

Duelen R, Gilbert G, Patel A, et al. Activin A modulates CRIPTO-1/HNF 4 α+ cells to guide cardiac differentiation from human embryonic stem cells. Stem Cells Int. 2017; 2017:4651238. doi: 10.1155/2017/4651238

[14]

Shafiei S, Farah O, Dufort D. Maternal Cripto is required for proper uterine decidualization and peri-implantation uterine remodeling. Biol Reprod. 2021; 104(5):1045-1057. doi: 10.1093/biolre/ioab020

[15]

Stephens EB, Jackson M, Cui L, et al. Early dysregulation of cripto-1 and immunomodulatory genes in the cerebral cortex in a macaque model of neuro AIDS. Neurosci Lett. 2006; 410(2):94-99. doi: 10.1016/j.neulet.2006.07.066

[16]

Wechselberger C, Ebert AD, Bianco C, et al. Cripto-1 enhances migration and branching morphogenesis of mouse mammary epithelial cells. Exp Cell Res. 2001; 266(1):95-105. doi: 10.1006/excr.2001.5195

[17]

Angrisano T, Varrone F, Ragozzino E, Fico A, Minchiotti G, Brancaccio M. Cripto is targeted by miR-1a-3p in a mouse model of heart development. Int J Mol Sci. 2023; 24(15):12251. doi: 10.3390/ijms241512251

[18]

Jin JZ, Ding JX. Is required for mesoderm and endoderm cell allocation during mouse gastrulation. Dev Biol. 2013; 381(1):170-178. doi: 10.1016/j.ydbio.2013.05.029

[19]

Lin XL, Zhao WT, Jia JS, et al. Ectopic expression of Cripto-1 in transgenic mouse embryos causes hemorrhages, fatal cardiac defects and embryonic lethality. Sci Rep. 2016; 6:34501. doi: 10.1038/srep34501

[20]

Klauzinska M, McCurdy D, Rangel MC, et al. Cripto-1 ablation disrupts alveolar development in the mouse mammary gland through a progesterone receptor-mediated pathway. Am J Pathol. 2015; 185(11):2907-2922. doi: 10.1016/j.ajpath.2015.07.023

[21]

Sousa ER, Zoni E, Karkampouna S, et al. A multidisciplinary review of the roles of cripto in the scientific literature through a bibliometric analysis of its biological roles. Cancers (Basel). 2020; 12(6):1480. doi: 10.3390/cancers12061480

[22]

Nagaoka T, Karasawa H, Castro NP, Rangel MC, Salomon DS, Bianco C. An evolving web of signaling networks regulated by cripto-1. Growth Factors. 2012; 30(1):13-21. doi: 10.3109/08977194.2011.641962

[23]

Morkel M, Huelsken J, Wakamiya M, et al. β-Catenin regulates Cripto- and Wnt3-dependent gene expression programs in mouse axis and mesoderm formation. Development. 2003; 130(25):6283-6294. doi: 10.1242/dev.00859

[24]

Watanabe K, Nagaoka T, Lee JM, et al. Enhancement of Notch receptor maturation and signaling sensitivity by cripto-1. J Cell Biol. 2009; 187(3):343-353. doi: 10.1083/jcb.200905105

[25]

Bianco C, Cotten C, Lonardo E, et al. Cripto-1 is required for hypoxia to induce cardiac differentiation of mouse embryonic stem cells. Am J Pathol. 2009; 175(5):2146-2158. doi: 10.2353/ajpath.2009.090218

[26]

Hamada S, Watanabe K, Hirota M, et al. β-catenin/TCF/LEF regulate expression of the short form human Cripto-1. Biochem Bioph Res Commun. 2007; 355(1):240-244. doi: 10.1016/j.bbrc.2007.01.143

[27]

Mancino M, Strizzi L, Wechselberger C, et al. Regulation of human cripto-1 gene expression by TGF-beta1 and BMP-4 in embryonal and colon cancer cells. J Cell Physiol. 2008; 215(1):192-203. doi: 10.1002/jcp.21301

[28]

Bianco C, Castro NP, Baraty C, et al. Regulation of human Cripto-1 expression by nuclear receptors and DNA promoter methylation in human embryonal and breast cancer cells. J Cell Physiol. 2013; 228(6):1174-1188. doi: 10.1002/jcp.24271

[29]

Ong SG, Lee WH, Kodo K, Wu JC. MicroRNA-mediated regulation of differentiation and trans-differentiation in stem cells. Adv Drug Deliv Rev. 2015; 88:3-15. doi: 10.1016/j.addr.2015.04.004

[30]

Park KS, Moon YW, Raffeld M, Lee DH, Wang YS, Giaccone G. High cripto-1 and low miR-205 expression levels as prognostic markers in early stage non-small cell lung cancer. Lung Cancer. 2018; 116:38-45. doi: 10.1016/j.lungcan.2017.12.010

[31]

Xiaojun B, Yanjun X, Yilun L. MicroRNA-3653-3p inhibited papillary thyroid carcinoma progression by regulating CRIPTO-1. Cell Mol Biol. 2024; 69(14):272-276. doi: 10.14715/cmb/2023.69.14.45

[32]

Arnouk H, Yum G, Shah D. Cripto-1 as a key factor in tumor progression, epithelial to mesenchymal transition and cancer stem cells. Int J Mol Sci. 2021; 22(17):9280. doi: 10.3390/ijms22179280

[33]

Liu R, Li XQ, Gao WM, et al. Monoclonal antibody against cell surface GRP78 as a novel agent in suppressing PI3K/AKT signaling, tumor growth, and metastasis. Clin Cancer Res. 2013; 19(24):6802-6811. doi: 10.1158/1078-0432.Ccr-13-1106

[34]

Ni M, Zhang Y, Lee AS. Beyond the endoplasmic reticulum: Atypical GRP78 in cell viability, signalling and therapeutic targeting. Biochem J. 2011; 434:181-188. doi: 10.1042/Bj20101569

[35]

Kelber JA, Panopoulos AD, Shani G, et al. Blockade of cripto binding to cell surface GRP78 inhibits oncogenic cripto signaling via MAPK/PI3K and Smad2/3 pathways. Oncogene. 2009; 28(24):2324-2336. doi: 10.1038/onc.2009.97

[36]

Castaneda M, Den Hollander P, Kuburich NA, Rosen JM, Mani SA. Mechanisms of cancer metastasis. Semin Cancer Biol. 2022; 87:17-31. doi: 10.1016/j.semcancer.2022.10.006

[37]

Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019; 20(2):69-84. doi: 10.1038/s41580-018-0080-4

[38]

Balcioglu O, Heinz RE, Freeman DW, et al. CRIPTO antagonist ALK4-Fc inhibits breast cancer cell plasticity and adaptation to stress. Breast Cancer Res. 2020; 22(1):125. doi: 10.1186/s13058-020-01361-z

[39]

Lambert AW, Weinberg RA. Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat Rev Cancer. 2021; 21(5):325-338. doi: 10.1038/s41568-021-00332-6

[40]

Fiorenzano A, Pascale E, D’Aniello C, et al. Cripto is essential to capture mouse epiblast stem cell and human embryonic stem cell pluripotency. Nat Commun. 2016; 7:12589. doi: 10.1038/ncomms12589

[41]

Bianco C, Rangel MC, Castro NP, et al. Role of Cripto-1 in stem cell maintenance and malignant progression. Am J Pathol. 2010; 177(2):532-540. doi: 10.2353/ajpath.2010.100102

[42]

Liu Q, Cui X, Yu X, et al. Cripto-1 acts as a functional marker of cancer stem-like cells and predicts prognosis of the patients in esophageal squamous cell carcinoma. Mol Cancer. 2017; 16:81. doi: 10.1186/s12943-017-0650-7

[43]

Lo RCL, Leung CON, Chan KKS, et al. Cripto-1 contributes to stemness in hepatocellular carcinoma by stabilizing Dishevelled-3 and activating Wnt/β-catenin pathway. Cell Death Differ. 2018; 25(8):1426-1441. doi: 10.1038/s41418-018-0059-x

[44]

Alowaidi F, Hashimi SM, Nguyen M, et al. Investigating the role of CRIPTO-1 (TDGF-1) in glioblastoma multiforme U87 cell line. J Cell Biochem. 2019; 120(5):7412-7427. doi: 10.1002/jcb.28015

[45]

Alowaidi F, Hashimi SM, Alqurashi N, Wood SA, Wei MQ. Cripto-1 overexpression in U87 glioblastoma cells activates MAPK, focal adhesion and ErbB pathways. Oncol Lett. 2019; 18(3):3399-3406. doi: 10.3892/ol.2019.10626

[46]

Brandes AA, Tosoni A, Franceschi E, Reni M, Gatta G, Vecht C. Glioblastoma in adults. Crit Rev Oncol Hematol. 2008; 67(2):139-152. doi: 10.1016/j.critrevonc.2008.02.005

[47]

Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS.CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in2011-2015. Neuro Oncol. 2018; 20(suppl 4):iv1-iv86. doi: 10.1093/neuonc/noy131

[48]

Zhao Y, Huang W, Kim TM, et al. MicroRNA-29a activates a multi-component growth and invasion program in glioblastoma. J Exp Clin Cancer Res. 2019; 38:1-13. doi: 10.1186/s13046-019-1026-1

[49]

Tysnes BB, Sætran HA, Mork SJ, et al. Age-dependent association between protein expression of the embryonic stem cell marker cripto-1 and survival of glioblastoma patients. Transl Oncol. 2013; 6(6):732-741. doi: 10.1593/tlo.13427

[50]

Pilgaard L, Mortensen JH, Henriksen M, et al. Cripto-1 expression in glioblastoma multiforme. Brain Pathol. 2014; 24(4):360-370. doi: 10.1111/bpa.12131

[51]

Amaral MN, Faísca P, Ferreira HA, Gaspar MM, Reis CPJC. Current insights and progress in the clinical management of head and neck cancer. Cancers (Basel). 2022; 14(24):6079. doi: 10.3390/cancers14246079

[52]

Petersson F. Nasopharyngeal Carcinoma: A Review. Netherlands: Elsevier; 2015. p. 54-73. doi: 10.1053/j.semdp.2015.02.021

[53]

Wu ZR, Li G, Wu LR, Weng DS, Li XP, Yao KT. Cripto-1 overexpression is involved in the tumorigenesis of nasopharyngeal carcinoma. BMC Cancer. 2009; 9:315. doi: 10.1186/1471-2407-9-315

[54]

Ye Q, Li J, Wang XY, et al. In vivo and in vitro study of co-expression of LMP1 and Cripto-1 in nasopharyngeal carcinoma. Braz J Otorhinolaryngol. 2020; 86(5):617-625. doi: 10.1016/j.bjorl.2019.04.002

[55]

Li XH, Li D, Liu C, Zhang MM, Guan XJ, Fu Y. p33ING1b regulates acetylation of p53 in oral squamous cell carcinoma via SIR2. Cancer Cell Int. 2020; 20:398. doi: 10.1186/s12935-020-01489-0

[56]

Yoon HJ, Hong JS, Shin WJ, et al. The role of Cripto-1 in the tumorigenesis and progression of oral squamous cell carcinoma. Oral Oncol. 2011; 47(11):1023-1031. doi: 10.1016/j.oraloncology.2011.07.019

[57]

Jain A, Mallupattu SK, Thakur R, et al. Role of oncofetal protein CR-1 as a potential tumor marker for oral squamous cell carcinoma. Indian J Clin Biochem. 2021; 36:288-295. doi: 10.1007/s12291-020-00898-2

[58]

Daraghma H, Untiveros G, Raskind A, et al. The role of Nodal and Cripto-1 in human oral squamous cell carcinoma. Oral Dis. 2021; 27(5):1137-1147. doi: 10.1111/odi.13640

[59]

Xu C, Yuan Q, Hu H, et al. Expression of Cripto-1 predicts poor prognosis in stage I non-small cell lung cancer. J Cell Mol Med. 2020; 24(17):9705-9711. doi: 10.1111/jcmm.15518

[60]

Huang T, Guo YZ, Yue X, et al. Cripto-1 promotes tumor invasion and predicts poor outcomes in hepatocellular carcinoma. Carcinogenesis. 2020; 41(5):571-581. doi: 10.1093/carcin/bgz133

[61]

Hu C, Zhang Y, Zhang M, et al. Exosomal cripto-1 serves as a potential biomarker for perihilar cholangiocarcinoma. Front Oncol. 2021; 11:730615. doi: 10.3389/fonc.2021.730615

[62]

Liu N, Su C, Xue J. Application of computed tomography scanning parameters combined with serum cripto-1 in the diagnosis of renal cell carcinoma. Arch Esp Urol. 2024; 77(1):25-30. doi: 10.56434/j.arch.esp.urol.20247701.3

[63]

Tesar EC, Mikolasevic I, Skocilic I, et al. Prostate cancer scoring index for risk of progression of radioresistant disease. J Pers Med. 2023; 13(5):870. doi:10.3390/jpm13050870

[64]

Gudbergsson JM, Duroux M. An evaluation of different cripto-1 antibodies and their variable results. J Cell Biochem. 2020; 121(1):545-556. doi: 10.1002/jcb.29293

[65]

Ligtenberg MA, Witt K, Galvez-Cancino F, et al. Cripto-1 vaccination elicits protective immunity against metastatic melanoma. Oncoimmunology. 2016; 5(5):e1128613. doi: 10.1080/2162402X.2015.1128613

[66]

Ishii H, Zahra MH, Takayanagi A, Seno M. A novel artificially humanized anti-cripto-1 antibody suppressing cancer cell growth. Int J Mol Sci. 2021; 22(4):1709. doi: 10.3390/ijms22041709

[67]

Afify SM, Hassan G, Nawara HM, et al. Optimization of production and characterization of a recombinant soluble human Cripto-1 protein inhibiting self-renewal of cancer stem cells. J Cell Biochem. 2022; 123(7):1183-1196. doi: 10.1002/jcb.30272

[68]

Annamaria S, Fabio S, Jwala PS, et al. Recombinant humanized Fab fragments targeting the CFC domain of human cripto-1. Biochem Biophys Res Commun. 2023; 694:149417. doi: 10.1016/j.bbrc.2023.149417

[69]

Iaccarino E, Calvanese L, Untiveros G, et al. Structure-based design of small bicyclic peptide inhibitors of cripto-1 activity. Biochem J. 2020; 477(8):1391-1407. doi: 10.1042/Bcj20190953

[70]

Wang Y, Li X, Wang S, et al. miR-3929 inhibits proliferation and promotes apoptosis by downregulating cripto-1 expression in cervical cancer cells. Cytogenet Genome Res. 2021; 161:425-436. doi: 10.1159/000518521

[71]

Zang TL. Effect of combination of radiotherapy and docetaxel on Cripto-1, b-catenin and DBC1 expression in breast cancer patients. Indian J Exp Biol. 2024; 62(1):71-76. doi: 10.56042/ijeb.v62i01.7444

AI Summary AI Mindmap
PDF

38

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/