Serological markers for enhanced malaria surveillance from an elimination point of view: A narrative review

Vinita Mamnani , Kanika Verma , Praveen Kumar Bharti , Nitika Nitika

Asian Pacific Journal of Tropical Medicine ›› 2025, Vol. 18 ›› Issue (3) : 102 -112.

PDF (383KB)
Asian Pacific Journal of Tropical Medicine ›› 2025, Vol. 18 ›› Issue (3) : 102 -112. DOI: 10.4103/apjtm.apjtm_84_24
REVIEW ARTICLE

Serological markers for enhanced malaria surveillance from an elimination point of view: A narrative review

Author information +
History +
PDF (383KB)

Abstract

Malaria continues to pose a significant global health challenge despite a significant achievement in control and elimination in certain areas. Accurate and timely diagnosis is crucial for effective disease management and control, and finally leading to elimination. However, microscopy and rapid diagnostic tests (RDTs) have traditionally been the primary malaria diagnostic tools used globally, with certain shortcomings, including their limited sensitivity, specificity, and inability to identify asymptomatic infections. Serological markers have emerged as promising alternatives in malaria serosurveillance, particularly in countries where targets have already been set for elimination. This review highlights the advantages of serological markers over conventional diagnostic techniques and discusses some of the most promising serological markers against Plasmodium species-specific antigens. The implementation of serosurveillance, coupled with the utilization of these serological markers represents a transformative shift in malaria surveillance. By capitalizing on the immune memory of individuals, serosurveillance also enables the identification of recent and past infections. This approach is particularly valuable in low- transmission settings and for tracking changes in malaria prevalence over time. While recognizing the use of serological markers across various global contexts, this review predominantly emphasizes their significance within the framework of India.

Keywords

Microscopy / Rapid diagnostic tests / Serosurveillance / Serological markers / Sensitivity / Specificity

Cite this article

Download citation ▾
Vinita Mamnani, Kanika Verma, Praveen Kumar Bharti, Nitika Nitika. Serological markers for enhanced malaria surveillance from an elimination point of view: A narrative review. Asian Pacific Journal of Tropical Medicine, 2025, 18(3): 102-112 DOI:10.4103/apjtm.apjtm_84_24

登录浏览全文

4963

注册一个新账户 忘记密码

Conflict of interest statement

The authors declare no conflicts of interests.

Funding

The authors received no extramural funding for the study.

Authors’ contributions

NN, PKB, and VM conceptualized the study; VM did the literature review; VM and KV analysed and drafted the manuscript; NN, PKB, and KV critically reviewed the manuscript. All authors read and approved the final manuscript.

Publisher’s note

The Publisher of the Journal remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments

The authors would like to thank the University Grants Commission (UGC) for VM fellowship, and ICMR-NIMR for Institutional support.

References

[1]

World Health Organization. World malaria report.2024. [Online]. Available from: https://www.who.int/publicationsMtem/9789240104440. [Accessed on 17 February 2025].

[2]

National Vector Borne Disease Control Programme. Malaria situation in India. [Online]. Available from: https://nvbdcp.gov.in/. [Accessed on 11February2025].

[3]

Tuteja R. Malaria-an overview. FEBS J 2007; 274(18): 4670-4679.

[4]

Idro R, Marsh K, John CC, Newton CR. Cerebral malaria: Mechanisms of brain injury and strategies for improved neurocognitive outcome. Pediatr Res 2010; 68(4): 267-274.

[5]

Krishnan A, Karnad DR. Severe falciparum malaria: An important cause of multiple organ failure in Indian intensive care unit patients. Crit Care Med 2003; 31(9): 2278-2784.

[6]

Haldar K, Bhattachaijee S, Safeukui I. Drug resistance in Plasmodium. Nat Rev Microbiol 2018; 16(3): 156-170.

[7]

Chotirat S, Nekkab N, Kumpitak C, Hietanen J, White MT, Kiattibutr K, et al. Application of 23 novel serological markers for identifying recent exposure to Plasmodium vivax parasites in an endemic population of western Thailand. Front Microbiol 2021; 12: 643501.

[8]

Singh A, Bhandari S, Das A, Bharti PK. Asymptomatic low-density Plasmodium falciparum infections: A challenge in malaria elimination in India. J Infect Public Health 2021; 14(11): 1600-1602.

[9]

Cheng Q, Cunningham J, Gatton ML. Systematic review of submicroscopic P. vivax infections: Prevalence and determining factors. PLoS Negl Trop Dis 2015; 9(1): e3413.

[10]

Oyegoke OO, Maharaj L, Akoniyon OP, Kwoji I, Roux AT, Adewumi TS, et al. Malaria diagnostic methods with the elimination goal in view. Parasitol Res 2022; 121(7): 1867-1885.

[11]

Lourenço C, Tatem AJ, Atkinson PM, Cohen JM, Pindolia D, Bhavnani D, et al. Strengthening surveillance systems for malaria elimination: A global landscaping of system performance, 2015-2017. Malar J 2019; 18: 1-11.

[12]

Sharma S, Verma R, Yadav B, Kumar A, Rahi M, Sharma A. What India can learn from globally successful malaria elimination programmes. BMJ Glob Health 2022; 7(6): e008431.

[13]

Berzosa P, de Lucio A, Romay-Barja M, Herrador Z, González V, García L, et al. Comparison of three diagnostic methods (microscopy, RDT, and PCR) for the detection of malaria parasites in representative samples from Equatorial Guinea. Malar J 2018; 17(1): 1-12.

[14]

World Health Organization. Malaria parasite counting. 2016. [Online]. Available from: https://www.who.int/publications/i/item/HTM-GMP-MM-SOP-09. [Accessed on 10 February 2025].

[15]

UNICEF, Centers for Disease Control. Malaria rapid diagnostic test performance: Results of WHO product testing of malaria RDTs: round 1 (2008). Geneva: World Health Organization; 2009.

[16]

Orish VN, De-Gaulle VF, Sanyaolu AO. Interpreting rapid diagnostic test (RDT) for Plasmodium falciparum. BMC Res Notes 2018; 11: 1-6.

[17]

Berhane A, Russom M, Bahta I, Hagos F, Ghirmai M, Uqubay S. Rapid diagnostic tests failing to detect Plasmodium falciparum infections in Eritrea: An investigation of reported false negative RDT results. Malar J 2017; 16(1): 1-6.

[18]

Yang S, Rothman RE. PCR-based diagnostics for infectious diseases: Uses, limitations, and future applications in acute-care settings. Lancet Infect Dis 2004; 4(6): 337-348.

[19]

Sondo P, Derra K, Lefevre T, Diallo-Nakanabo S, Tarnagda Z, Zampa O, et al. Genetically diverse Plasmodium falciparum infections, within-host competition and symptomatic malaria in humans. Sci Rep 2019; 9(1): 127.

[20]

Rahi M, Sharma R, Saroha P, Chaturvedi R, Bharti PK, Sharma A. Polymerase chain reaction-based malaria diagnosis can be increasingly adopted during current phase of malaria elimination in India. Am J Trop Med Hyg 2022; 106(4): 1005-1012.

[21]

Elliott SR, Fowkes FJ, Richards JS, Reiling L, Drew DR, Beeson JG. Research priorities for the development and implementation of serological tools for malaria surveillance. F1000Prime Rep 2014; 6: 100.

[22]

Byrne I, Cramer E, Nelli L, Rerolle F, Wu L, Patterson C, et al. Characterizing the spatial distribution of multiple malaria diagnostic endpoints in a low-transmission setting in Lao PDR. Front Med 2022; 9: 929366.

[23]

Yao M, Xiao L, Sun X, Lin Z, Hao X, Bai Q, et al. Surveillance of Plasmodium vivax transmission using serological models in the border areas of China-Myanmar. Malar J 2022; 21(1): 1-9.

[24]

Huang F, Cui Y, Huang Z, Wang S, Li S, Guo X, et al. Serological surveillance on potential Plasmodium vivax exposure risk in a postelimination setting. Front Cell Infect Microbiol 2023; 13: 1132917.

[25]

Van den Hoogen LL, Stresman G, Présumé J, Romilus I, Mondélus G, Elismé T, et al. Selection of antibody responses associated with Plasmodium falciparum infections in the context of malaria elimination. Front Immunol 2020; 11: 928.

[26]

Rahim MAFA, Munajat MB, Dian ND, Seri Rakna MIM, Wahid W, Ghazali N, et al. Naturally acquired antibody response to Plasmodium falciparum and Plasmodium vivax among indigenous Orang Asli communities in Peninsular Malaysia. Front Cell Infect Microbiol 2023; 13: 1165634.

[27]

Dewasurendra RL, Dias JN, Sepulveda N, Gunawardena GSA, Chandrasekharan N, Drakeley C, et al. Effectiveness of a serological tool to predict malaria transmission intensity in an elimination setting. BMC Infect Dis 2017; 17(1): 1-14.

[28]

Fonseca AM, Gonzalez R, Bardaji A, Jairoce C, Ruperez M, Jimenez A, et al. VAR2CSA serology to detect Plasmodium falciparum transmission patterns in pregnancy. Emerg Infect Dis 2019; 25(10): 1851.

[29]

Drakeley CJ, Corran PH, Coleman PG, Tongren JE, McDonald SLR, Carneiro I, et al. Estimating medium-and long-term trends in malaria transmission by using serological markers of malaria exposure. Proc Natl Acad Sci 2005; 102(14): 5108-5113.

[30]

Sturrock HJ, Hsiang MS, Cohen JM, Smith DL, Greenhouse B, Bousema T, et al. Targeting asymptomatic malaria infections: Active surveillance in control and elimination. PLoS Med 2013; 10(6): e1001467.

[31]

Woodberry T, Minigo G, Piera KA, Hanley JC, de Silva HD, Salwati E, et al. Antibodies to Plasmodium falciparum and Plasmodium vivax merozoite surface protein 5 in Indonesia: Species-specific and cross-reactive responses. J Infect Dis 2008; 198(1): 134-142.

[32]

Igonet S, Vulliez-Le Normand B, Faure G, Riottot MM, Kocken CH, Thomas AW, et al. Cross-reactivity studies of an anti-Plasmodium vivax apical membrane antigen 1 monoclonal antibody: Binding and structural characterisation. J Mol Biol 2007; 366(5): 1523-1537.

[33]

Cook J, Reid H, Iavro J, Kuwahata M, Taleo G, Clements A, et al. Using serological measures to monitor changes in malaria transmission in Vanuatu. Malar J 2010; 9: 1-15.

[34]

Bousema T, Drakeley C, Gesase S, Hashim R, Magesa S, Mosha F, et al. Identification of hot spots of malaria transmission for targeted malaria control. J Infect Dis 2010; 201(11): 1764-1774.

[35]

Cook J, Speybroeck N, Sochanta T, Somony H, Sokny M, Claes F, et al. Sero-epidemiological evaluation of changes in Plasmodium falciparum and Plasmodium vivax transmission patterns over the rainy season in Cambodia. Malar J 2012; 11: 1-12.

[36]

Corran P, Coleman P, Riley E, Drakeley C. Serology: A robust indicator of malaria transmission intensity? Trends Parasitol 2007; 23(12): 575-582.

[37]

RTS SCTP. A phase 3 trial of RTS, S/AS01 malaria vaccine in African infants. N Engl J Med 2012; 367(24): 2284-2295.

[38]

Nitika N, Nema S, Bharti PK. R21 vaccine: A ray of hope for malaria elimination. Asian Pac J Trop Med 2023; 16(6): 243-244.

[39]

Kerkhof K, Sluydts V, Willen L, Kim S, Canier L, Heng S, et al. Serological markers to measure recent changes in malaria at population level in Cambodia. Malar J 2016; 15(1): 1-18.

[40]

Rosas-Aguirre A, Llanos-Cuentas A, Speybroeck N, Cook J, Contreras-Mancilla J, Soto V, et al. Assessing malaria transmission in a low endemicity area of north-western Peru. Malar J 2013; 12: 1-13.

[41]

Surendra H, Supargiyono Ahmad RA, Kusumasari RA, Rahayujati TB, Damayanti SY, et al. Using health facility-based serological surveillance to predict receptive areas at risk of malaria outbreaks in elimination areas. BMC Med 2020; 18: 1-14.

[42]

Barua P, Beeson JG, Maleta K, Ashorn P, Rogerson SJ. The impact of early life exposure to Plasmodium falciparum on the development of naturally acquired immunity to malaria in young Malawian children. Malar J 2019; 18: 1-12.

[43]

Ohrt C, Roberts KW, Sturrock HJ, Wegbreit J, Lee BY, Gosling RD. Information systems to support surveillance for malaria elimination. Am J Trop Med Hyg 2015; 93(1): 145.

[44]

Longley RJ, White MT, Takashima E, Brewster J, Morita M, Harbers M, et al. Development and validation of serological markers for detecting recent Plasmodium vivax infection. Nat Med 2020; 26(5): 741-749.

[45]

Obadia T, Nekkab N, Robinson LJ, Drakeley C, Mueller I, White MT. Developing sero-diagnostic tests to facilitate Plasmodium vivax serological test-and-treat approaches: Modeling the balance between public health impact and overtreatment. BMC Med 2022; 20(1): 98.

[46]

Tayipto Y, Liu Z, Mueller I, Longley RJ. Serology for Plasmodium vivax surveillance: A novel approach to accelerate towards elimination. Parasitol Int 2022; 87: 102492.

[47]

Zhao JH, Bhanot P, Hu JJ, Wang Q. A comprehensive analysis of Plasmodium circumsporozoite protein binding to hepatocytes. PLoS One 2016; 11(8): e0161607.

[48]

Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJ, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev 2016; 40(3): 343-372.

[49]

Vicentin EC, Françoso KS, Rocha MV, Iourtov D, dos Santos FL, Kubrusly FS, et al. Invasion-inhibitory antibodies elicited by immunization with Plasmodium vivax apical membrane antigen-1 expressed in Pichia pastoris yeast. Infect Immun 2014; 82(3): 1296-1307.

[50]

Lee SK, Han JH, Park JH, Ha KS, Park WS, Hong SH, et al. Evaluation of antibody responses to the early transcribed membrane protein family in Plasmodium vivax. Parasit Vectors 2019; 12: 1-10.

[51]

Kwenti TE, Moye AL, Wiylanyuy AB, Njunda LA, Nkuo-Akenji T. Variation in the immune responses against Plasmodium falciparum merozoite surface protein-1 and apical membrane antigen-1 in children residing in the different epidemiological strata of malaria in Cameroon. Malar J 2017; 16: 1-14.

[52]

Miura K, Zhou H, Muratova OV, Orcutt AC, Giersing B, Miller LH, et al. In immunization with Plasmodium falciparum apical membrane antigen 1, the specificity of antibodies depends on the species immunized. Infect Immun 2007; 75(12): 5827-5836.

[53]

Rodrigues MHC, Rodrigues KM, Oliveira TR, Cômodo AN, Rodrigues MM, Kocken CHM, et al. Antibody response of naturally infected individuals to recombinant Plasmodium vivax apical membrane antigen-1. Int J Parasitol 2005; 35(2): 185-192.

[54]

Keitany GJ, Kim KS, Krishnamurty AT, Hondowicz BD, Hahn WO, Dambrauskas N, et al. Blood stage malaria disrupts humoral immunity to the pre-erythrocytic stage circumsporozoite protein. Cell Rep 2016; 17(12): 3193-3205.

[55]

Longley RJ, Reyes-Sandoval A, Montoya-Díaz E, Dunachie S, Kumpitak C, Nguitragool W, et al. Acquisition and longevity of antibodies to Plasmodium vivax preerythrocytic antigens in Western Thailand. Clin Vaccine Immunol 2016; 23(2): 117-124.

[56]

Singer LM, Mirel LB, ter Kuile FO, Branch OH, Vulule JM, Kolczak MS, et al. The effects of varying exposure to malaria transmission on development of antimalarial antibody responses in preschool children. XVI. Asembo Bay Cohort Project. J Infect Dis 2003; 187(11): 1756-1764.

[57]

Nateghpour M, Etemadi S, Motevalli Haghi A, Eslami H, Mohebali M, Farivar L. Serological responses to a soluble recombinant circumsporozoite protein-VK210 of Plasmodium vivax (rPvCSP-VK210) among Iranian malaria patients. Eur J Med Res 2021; 26: 1-9.

[58]

Pereira VA, Sánchez-Arcila JC, Vasconcelos MPA, Ferreira AR, de Souza Videira L, Teva A, et al. Evaluating seroprevalence to circumsporozoite protein to estimate exposure to three species of Plasmodium in the Brazilian Amazon. Infect Dis Poverty 2018; 7: 1-12.

[59]

Spielmann T, Fergusen DJ, Beck HP. etramps, a new Plasmodium falciparum gene family coding for developmentally regulated and highly charged membrane proteins located at the parasite-host cell interface. Mol Biol Cell 2003; 14(4): 1529-1544.

[60]

Druetz T, van den Hoogen L, Stresman G, Joseph V, Hamre KES, Fayette C, et al. Etramp 5 as a useful serological marker in children to assess the immediate effects of mass drug campaigns for malaria. BMC Infect Dis 2022; 22(1): 1-11.

[61]

Macalinao MLM, Fornace KM, Reyes RA, Hall T, Bareng APN, Adams JH, et al. Analytical approaches for antimalarial antibody responses to confirm historical and recent malaria transmission: An example from the Philippines. Lancet Reg Heal Pac 2023; 37: 100792.

[62]

Sachdeva S, Ahmad G, Malhotra P, Mukherjee P, Chauhan VS. Comparison of immunogenicities of recombinant Plasmodium vivax merozoite surface protein 1 19-and 42-kiloDalton fragments expressed in Escherichia coli. Infect Immun 2004; 72(10): 5775-5782.

[63]

Liu ZSJ, Sattabongkot J, White M, Chotirat S, Kumpitak C, Takashima E, et al. Naturally acquired antibody kinetics against Plasmodium vivax antigens in people from a low malaria transmission region in western Thailand. BMC Med 2022; 20(1): 89.

[64]

Lu F, Li J, Wang B, Cheng Y, Kong DH, Cui L, et al. Profiling the humoral immune responses to Plasmodium vivax infection and identification of candidate immunogenic rhoptry-associated membrane antigen (RAMA). J Proteomics 2014; 102: 66-82.

[65]

Wang Q, Zhao Z, Zhang X, Li X, Zhu M, Li P, et al. Naturally acquired antibody responses to Plasmodium vivax and Plasmodium falciparum merozoite surface protein 1 (MSP1) C-terminal 19 kDa domains in an area of unstable malaria transmission in Southeast Asia. PLoS One 2016; 11(3): e0151900.

[66]

Changrob S, Leepiyasakulchai C, Tsuboi T, Cheng Y, Lim CS, Chootong P, et al. Naturally-acquired cellular immune response against Plasmodium vivax merozoite surface protein-1 paralog antigen. J Proteomics 2015; 14: 1-9.

[67]

Perraut R, Richard V, Varela ML, Trape JF, Guillotte M, Tall A, et al. Comparative analysis of IgG responses to Plasmodium falciparum MSP1p19 and PF13-DBL1α1 using ELISA and a magnetic bead-based duplex assay (MAGPIX®-Luminex) in a Senegalese meso-endemic community. Malar J 2014; 13: 1-11.

[68]

Kuamsab N, Putaporntip C, Pattanawong U, Jongwutiwes S. Insights into the molecular diversity of Plasmodium vivax merozoite surface protein-3γ (pvmsp3γ), a polymorphic member in the msp3 multi-gene family. Sci Rep 2020; 10(1): 10977.

[69]

Verma A, Joshi H, Singh V, Anvikar A, Valecha N. Plasmodium vivax msp-3a polymorphisms: Analysis in the Indian subcontinent. Malar J 2016; 15: 1-13.

[70]

Quadiri A, Kori L, Singh SK, Anvikar AR. Antibody responses against Plasmodium falciparum MSP3 protein during natural malaria infection in individuals living in malaria-endemic regions of India. Proc Natl Acad Sci India Sect B Biol Sci 2022; 92(3): 613-619.

[71]

Deshmukh A, Chourasia BK, Mehrotra S, Kana IH, Paul G, Panda A, et al. Plasmodium falciparum MSP 3 exists in a complex on the merozoite surface and generates antibody response during natural infection. Infect Immun 2018; 86(8): e00067-18.

[72]

Madeira F, Madhusoodanan N, Lee J, Eusebi A, Niewielska A, Tivey ARN, et al. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res 2024; 52(W1): W521-525.

[73]

Bahl A, Brunk B, Crabtree J, Fraunholz MJ, Gajria B, Grant GR, et al. PlasmoDB: The Plasmodium genome resource. A database integrating experimental and computational data. Nucleic Acids Res 2003; 31(1): 212-215.

[74]

Kale S, Yadav CP, Rao PN, Shalini S, Eapen A, Srivasatava HC, et al. Antibody responses within two leading Plasmodium vivax vaccine candidate antigens in three geographically diverse malaria-endemic regions of India. Malar J 2019; 18(1): 1-13.

[75]

Seth RK, Bhat AA, Rao DN, Biswas S. Acquired immune response to defined Plasmodium vivax antigens in individuals residing in northern India. Microbes Infect Immun 2010; 12(3): 199-206.

[76]

Chan Y, Martin D, Mace KE, Jean SE, Stresman G, Drakeley C, et al. Multiplex serology for measurement of IgG antibodies against eleven infectious diseases in a national serosurvey: Haiti 2014-2015. Front Public Health 2022; 10: 897013.

[77]

Rahim MAFA, Chuangchaiya S, Chanpum P, Palawong L, Kantee P, Dian ND, et al. Seroepidemiological surveillance, community perceptions and associated risk factors of malaria exposure among forest-goers in Northeastern Thailand. Front Cell Infect Microbiol 2022; 12: 953585.

[78]

Katowa B, Hamapumbu H, Thuma PE, Bérubé S, Wesolowski A, Moss WJ, et al. Declining age-specific seroprevalence and seroconversion rates in Plasmodium falciparum from 2009 to 2018 documents progress toward malaria elimination in Southern Zambia. Am J Trop Med Hyg 2023; 109(1): 134-137.

[79]

Perrotti E, L’episcopia M, Menegon M, Soares IS, Rosas-Aguirre A, Speybroeck N, et al. Reduced polymorphism of Plasmodium vivax early transcribed membrane protein (PvETRAMP) 11.2 . Parasi Vectors 2023; 16(1): 238.

[80]

Nyunt MH, Soe TN, Shein T, Zaw NN, Han SS, Muh F, et al. Estimation on local transmission of malaria by serological approach under low transmission setting in Myanmar. Malar J 2018; 17: 1-9.

[81]

Rogier E, van den Hoogen L, Herman C, Gurrala K, Joseph V, Stresman G, et al. High-throughput malaria serosurveillance using a one-step multiplex bead assay. Malar J 2019; 18: 1-10.

[82]

Yman V, Tuju J, White MT, Kamuyu G, Mwai K, Kibinge N, et al. Distinct kinetics of antibodies to 111 Plasmodium falciparum proteins identifies markers of recent malaria exposure. Nat Commun 2022; 13(1): 331.

[83]

O’Flaherty K, Oo WH, Zaloumis SG, Cutts JC, Aung KZ, Thein MM, et al. Community-based molecular and serological surveillance of subclinical malaria in Myanmar. BMC Med 2021; 19: 1-12.

AI Summary AI Mindmap
PDF (383KB)

251

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/