Exploring the impact of envelope protein mutations on Chikungunya virus epitopes: Analysis of virus samples from the Alagoas State outbreak, Brazil

Jamile Taniele-Silva , Andrade Brandão Júlia De , Oliveira Maria Júlia Tenório Costa Cinésio De , Souza Stephannie Janaina Maia De , Jean Fábio Gomes Ferro , Lima Magliones Carneiro De , Abelardo Silva-Júnior , Ênio José Bassi , Letícia Anderson

Asian Pacific Journal of Tropical Medicine ›› 2025, Vol. 18 ›› Issue (6) : 269 -279.

PDF (1989KB)
Asian Pacific Journal of Tropical Medicine ›› 2025, Vol. 18 ›› Issue (6) : 269 -279. DOI: 10.4103/apjtm.apjtm_746_24
ORIGINAL ARTICLE

Exploring the impact of envelope protein mutations on Chikungunya virus epitopes: Analysis of virus samples from the Alagoas State outbreak, Brazil

Author information +
History +
PDF (1989KB)

Abstract

Objective: To investigate mutations in the Chikungunya (CHIKV) envelope genome region and evaluate their potential impact on B lymphocyte epitopes via in silico analysis.

Methods: E1, E2 and 6K protein genes were sequenced from viral RNA isolated from 13 CHIKV-positive serum samples from Alagoas State, Brazil, during the 2016 outbreak. Phylogenetic analysis, experimental epitope identification in the immune epitope database (IEDB) and in silico approaches were employed to predict the potential impact of the detected mutations.

Results: The sequences were clustered via phylogenetic analysis. The CHIKV isolates belong to the ECSA genotype, with 13 detected amino acid mutations. Five mutations are located on the surface of the viral particle in regions critical for cellular receptor interaction. Nine mutations are known experimentally validated epitopes for B and T cells. In B-cell epitope predictions, mutations affect sequences within three conformational epitopes in E2 and one in E1, as well as linear epitopes. Notably, the E2-G60D mutation found in the Alagoas strain has been previously reported to influence the vector competence of Aedes aegypti, the primary vector in Brazil.

Conclusions: Genomic surveillance and an in-depth understanding of viral mutations are crucial for adapting public health strategies and improving the outbreak response. These findings could have significant public health implications, such as the development of more effective vaccines, diagnostic tests, and antiviral therapies.

Keywords

Genomic variations / In silico analysis / Epitope prediction / Glycoprotein mutations

Cite this article

Download citation ▾
Jamile Taniele-Silva, Andrade Brandão Júlia De, Oliveira Maria Júlia Tenório Costa Cinésio De, Souza Stephannie Janaina Maia De, Jean Fábio Gomes Ferro, Lima Magliones Carneiro De, Abelardo Silva-Júnior, Ênio José Bassi, Letícia Anderson. Exploring the impact of envelope protein mutations on Chikungunya virus epitopes: Analysis of virus samples from the Alagoas State outbreak, Brazil. Asian Pacific Journal of Tropical Medicine, 2025, 18(6): 269-279 DOI:10.4103/apjtm.apjtm_746_24

登录浏览全文

4963

注册一个新账户 忘记密码

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Funding

This study was supported by Decit/SCTIE-Ministério da Saúde, Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq), Fundação de Amparo à Pesquisa do Estado de Alagoas(FAPEAL) and Secretaria de Estado da Saúde de Alagoas (SESAUAL)[PPSUS 60030 000841/2016].

Authors’ contributions

Concepts, design, experimental studies, data analysis and manuscript preparation: JTS. Experimental studies: MJTCCO, SJMS, JFGF and MCL. Experimental studies and manuscript editing: JAB. Manuscript review: ASJ. Concepts, design, experimental studies, data analysis and manuscript review: EJB and LA.

Publisher’s note

The Publisher of the Journal remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Edited by Zhang Q, Lei Y, Pan Y

Acknowledgments

We would like to thank all the technical support of the Laboratorio Central de Saude Publica do Estado de Alagoas (LACEN/AL), Maceio, Alagoas, Brazil, and Ana Rachel V. Lima from Laboratorio de Pesquisas em Virologia e Imunologia (LAPEVI).

References

[1]

Ketkar H, Herman D, Wang P. Genetic determinants of the re-emergence of arboviral diseases. Viruses 2019; 11(2):150.

[2]

Leparc-Goffart I, Nougairede A, Cassadou S, Prat C, de Lamballerie X. Chikungunya in the Americas. Lancet 2014; 383(9916):514.

[3]

Nunes MRT, Faria NR, de Vasconcelos JM, Golding N, Kraemer MU, de Oliveira LF, et al. Emergence and potential for spread of Chikungunya virus in Brazil. BMC Med 2015; 13(1):102.

[4]

Ministério da Saúde do Brasil. Monitoramento dos casos de dengue, febre de chikungunya e febre pelo vírus Zika até a Semana Epidemiológica 50, 2017. Boletim Epidemiológico 2018; 48(45):1-13.

[5]

Khan AH, Morita K, del Carmen Parquet M, Hasebe F, Mathenge EGM, Igarashi A. Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. J Gen Virol 2002; 83(12):3075-3084.

[6]

Simizu B, Yamamoto K, Hashimoto K, Ogata T. Structural proteins of Chikungunya virus. J Virol 1984; 51(1):254-258.

[7]

Powers AM, Brault AC, Shirako Y, Strauss EG, Kang W, Strauss JH, et al. Evolutionary relationships and systematics of the alphaviruses. J Virol 2001; 75(21):10118-10131.

[8]

Holmes EC. The comparative genomics of viral emergence. PNAS 2010; 107(1):1742-1746.

[9]

Tsetsarkin KA, Vanlandingham DL, Mcgee CE, Higgs S. A single mutation in Chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 2007; 3(12):1895-1906.

[10]

Hawman DW, Carpentier KS, Fox JM, May NA, Sanders W, Montgomery SA, et al. Mutations in the E2 glycoprotein and the 3’ untranslated region enhance Chikungunya virus virulence in mice. J Virol 2017; 91(20):1-17.

[11]

Delang L, Guerrero NS, Tas A, Querat G, Pastorino B, Froeyen M, et al. Mutations in the chikungunya virus non-structural proteins cause resistance to favipiravir (T-705), a broad-spectrum antiviral. J Antimicrob Chemother 2014; 69(10):2770-2784.

[12]

Kam YW, Lee WWL, Simarmata D, Harjanto S, Teng TS, Tolou H, et al. Longitudinal analysis of the human antibody response to Chikungunya virus infection: Implications for serodiagnosis and vaccine development. J Virol 2012; 86(23):13005-13015.

[13]

Priya R, Dhanwani R, Patro IK, Rao PVL, Parida MM. Differential regulation of TLR mediated innate immune response of mouse neuronal cells following infection with novel ECSA genotype of Chikungunya virus with and without E1: A226V mutation. Infect Genet Evol 2013;20:396-406.

[14]

de Lira Tanabe EL, Tanabe ISB, Dos Santos EC, da Silva Marques JP, Borges AA, de Lima MC, et al. Report of East-Central South African Chikungunya virus genotype during the 2016 outbreak in the Alagoas State, Brazil. Rev Inst Med Trop Sao Paulo 2018;60:e19. doi: 10.1590/s1678-9946201860019.

[15]

Charlys da Costa A, Thézé J, Cavalcante Vasconcelos Komninakis S, Lopes Lopes Sanz-Duro R, Lemos Felinto MR, Corrêa Moura LC, et al. Spread of Chikungunya virus East/Central/South African genotype in Northeast Brazil. Emerg Infect Dis 2017; 23(10):1742-1744.

[16]

Dos Passos Cunha M, Dos Santos CA, de Lima Neto DF, Schanoski AS, Pour SZ, Passos SD, et al. Outbreak of chikungunya virus in a vulnerable population of Sergipe, Brazil—A molecular and serological survey. J Clin Virol 2017;97:44-49.

[17]

Kam YW, Simarmata D, Chow A, Her Z, Teng TS, Ong EKS, et al. Early appearance of neutralizing immunoglobulin G 3 antibodies is associated with Chikungunya virus clearance and long-term clinical protection. J Infect Dis 2012; 205(7):1147-1154.

[18]

Porta J, Prasad M, Wang C, Akahata W, Ng LFP, Rossmann G. Structural studies of Chikungunya virus-like particles complexed with human antibodies: Neutralization and cell-to-cell transmission. J Virol 2016; 90(3):1169-1177.

[19]

Chua C, Sam I, Merits A, Chan Y. Antigenic variation of East/Central/South African and Asian Chikungunya virus genotypes in neutralization by immune sera. PLoS Negl Trop Dis 2016; 10(8):e0004960. doi: 10.1371/journal.pntd.0004960.

[20]

Tuekprakhon A, Nakayama EE, Bartholomeeusen K, Puiprom O, Sasaki T, Huits R, et al. Variation at position 350 in the Chikungunya virus 6K-E 1 protein determines the sensitivity of detection in a rapid E1-antigen test. Sci Rep 2018; 8(1):1094.

[21]

Okabayashi T, Sasaki T, Masrinoul P, Chantawat N, Yoksan S, Nitatpattana N, et al. Detection of Chikungunya virus antigen by a novel rapid immunochromatographic test. J Clin Microbiol 2015; 53(2):382-388.

[22]

Yap G, Pok KY, Lai YL, Hapuarachchi HC, Chow A, Leo YS, et al. Evaluation of Chikungunya diagnostic assays: Differences in sensitivity of serology assays in two independent outbreaks. PLoS Negl Trop Dis 2010; 4(7):e753.

[23]

Gregianini TS, Ranieri T, Favreto C, Nunes ZMA, Tumioto Giannini GL, Sanberg ND, et al. Emerging arboviruses in Rio Grande do Sul, Brazil: Chikungunya and Zika outbreaks, 2014‐2016. Rev Med Virol 2017; 27(6). doi: 10.1002/rmv.1943.

[24]

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3—new capabilities and interfaces. Nucleic Acids Res 2012; 40(15):e115-e115.

[25]

Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32(5):1792-1797.

[26]

Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets brief communication. Mol Biol Evol 2016; 33(7):1870-1874.

[27]

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res 2018; 46(W1):W296-W303. doi: 10.1093/nar/gky427.

[28]

Schrödinger LLC, DeLano WL. The PyMOL molecular graphics system, Version 2.0. 2015.[Online]. Available from:https://www.pymol.org/. [Accessed on 20 June 2023].

[29]

Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, et al. The immune epitope database (IEDB):2018 update. Nucleic Acids Res 2019;47:339-343.

[30]

Andersen PH, Nielsen M, Lund O. Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci 2006; 15(11):2558-2567.

[31]

Kringelum JV, Lundegaard C, Lund O, Nielsen M. Reliable B cell epitope predictions: Impacts of method development and improved benchmarking. PLoS Comput Biol 2012; 8(12):e1002829. doi: 10.1371/journal.pcbi.1002829.

[32]

Lyra P, Campos G, Bandeira I, Sardi S, Costa L, Santos F, et al. Congenital Chikungunya virus infection after an outbreak in Salvador, Bahia, Brazil . AJP Rep 2016; 6(3):e299-e300.

[33]

Cunha MS, Schnellrath LC, Luiza M, Medaglia G, Casotto ME, Albano RM, et al. Autochthonous transmission of East/Central/South African genotype Chikungunya virus, Brazil. Emerg Infect Dis 2017; 23(10):1737-1739.

[34]

Costa-da-Silva AL, Ioshino RS, Petersen V, Lima AF, Cunha M dos P, Wiley MR, et al. First report of naturally infected Aedes aegypti with chikungunya virus genotype ECSA in the Americas. PLoS Negl Trop Dis 2017; 11(6):e0005630.

[35]

Mukhopadhyay S, Zhang W, Gabler S, Chipman PR, Strauss EG, Strauss JH, et al. Mapping the structure and function of the E1 and E 2 glycoproteins in alphaviruses. Structure 2006; 14(1):63-73.

[36]

Voss JE, Vaney MC, Duquerroy S, Vonrhein C, Girard-Blanc C, Crublet E, et al. Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nat Lett 2010; 468(7324):709-712.

[37]

Long F, Fong RH, Austin SK, Chen Z, Klose T, Fokine A, et al. Cryo-EM structures elucidate neutralizing mechanisms of anti-chikungunya human monoclonal antibodies with therapeutic activity. PNAS 2015; 112(45):13898-13903.

[38]

Smith SA, Silva LA, Fox JM, Diamond MS, Dermody TS, Crowe JE, et al. Isolation and characterization of broad and ultrapotent human monoclonal antibodies with therapeutic activity against Chikungunya virus. Cell Host Microbe 2015; 18(1):86-95.

[39]

Silva JPDC, Cunha MDP, Pour SZ, Hering VR, Neto DFL, Zanotto PMA. Chikungunya virus E2 structural protein B-cell epitopes analysis. Viruses 2022; 14(8):1839.

[40]

Fong RH, Banik SSR, Mattia K, Barnes T, Tucker D, Liss N, et al. Exposure of epitope residues on the outer face of the chikungunya virus envelope trimer determines antibody neutralizing efficacy. J Virol 2014; 88(24):14364-14379.

[41]

Kam YW, Lee WWL, Simarmata D, Le Grand R, Tolou H, Merits A, et al. Unique epitopes recognized by antibodies induced in Chikungunya virus-infected non-human primates: Implications for the study of immunopathology and vaccine development. PLoS One 2014; 9(4):e95647.

[42]

Zhou QF, Fox JM, Earnest JT, Ng TS, Kim AS, Fibriansah G, et al. Structural basis of Chikungunya virus inhibition by monoclonal antibodies. Proc Natl Acad Sci U S A 2020; 117(44):27637-27645.

[43]

Her Z, Teng T, Tan JJ, Teo T, Kam Y, Lum F, et al. Loss of TLR3 aggravates CHIKV replication and pathology due to an altered virus‐specific neutralizing antibody response. EMBO Mol Med 2015; 7(1):24-41.

[44]

Basu R, Zhai L, Rosso B, Tumban E. Bacteriophage Qβ virus-like particles displaying Chikungunya virus B-cell epitopes elicit high-titer E2 protein antibodies but fail to neutralize a Thailand strain of Chikungunya virus. Vaccine 2020; 38(11):2542-2550.

[45]

Lorente E, Barriga A, García-Arriaza J, Lemonnier FA, Esteban M, López D. Complex antigen presentation pathway for an HLA-A*0201-restricted epitope from Chikungunya 6K protein. PLoS Negl Trop Dis 2017; 11(10):e0006036. doi: 10.1371/journal.pntd.0006036.

[46]

Deeba F, Haider MSH, Ahmed A, Tazeen A, Faizan MI, Salam N, et al. Global transmission and evolutionary dynamics of the Chikungunya virus. Epidemiol Infect 2020; 148:e63.

[47]

Hapuarachchi HC, Bandara KBAT, Sumanadasa SDM, Hapugoda MD, Lai Y, Lee K, et al. Re-emergence of Chikungunya virus in South-east Asia: Virological evidence from Sri Lanka and Singapore. J GenVirol 2010; 91(Pt 4):1067-1076. doi: 10.1099/vir.0.015743-0.

[48]

Arankalle VA, Shrivastava S, Cherian S, Gunjikar RS, Walimbe AM, Jadhav SM, et al. Genetic divergence of Chikungunya viruses in India (1963-2006) with special reference to the 2005-2006 explosive epidemic. J Gen Virol 2007; 88(Pt 7):1967-1976. doi: 10.1099/vir.0.82714-0.

[49]

Kumar CVMN, Gopal DVRS. Reemergence of Chikungunya virus in Indian Subcontinent. Indian J Virol 2010; 21(1):8-17.

[50]

Shrinet J, Jain S, Sharma A, Singh SS, Mathur K, Rana V, et al. Genetic characterization of Chikungunya virus from New Delhi reveal emergence of a new molecular signature in Indian isolates. Virol J 2012;9:100. doi: 10.1186/1743-422X-9-100.

[51]

Sumathy K, Ella KM. Genetic diversity of Chikungunya virus, India 2006-2010: Evolutionary dynamics and serotype analyses. J Med Virol 2012;84:462-470.

[52]

Grandadam M, Caro V, Plumet S, Thiberge J, Souarès Y, Failloux A, et al. Chikungunya virus, Southeastern France. Emerg Infect Dis 2011; 17(5):910-913.

[53]

Agarwal A, Kumar A, Sukumaran D, Parida M, Kumar P. Two novel epistatic mutations (E1:K211E and E2:V264A) in structural proteins of Chikungunya virus enhance fitness in Aedes aegypti. Virology 2016;497:59-68.

[54]

Rangel MV, McAllister N, Dancel-Manning K, Noval MG, Silva LA, Stapleford KA. Emerging Chikungunya virus variants at the E1-E1 interglycoprotein spike interface impact virus attachment and inflammation. J Virol 2022; 96(4):1586-1607.

[55]

Kam Y, Lum F, Teo T, Lee WWL, Simarmata D, Harjanto S, et al. Early neutralizing IgG response to Chikungunya virus in infected patients targets a dominant linear epitope on the E 2 glycoprotein. EMBO Mol Med 2012; 4(4):330-343.

[56]

Basore K, Kim AS, Nelson CA, Zhang R, Smith BK, Uranga C, et al. Cryo-EM structure of Chikungunya virus in complex with the Mxra 8 receptor. Cell 2019; 177(7):1725-1737.e16.

[57]

Pal P, Dowd KA, Brien JD, Edeling MA, Gorlatov S, Johnson S, et al. Development of a highly protective combination monoclonal antibody therapy against Chikungunya virus. PLoS Pathog 2013; 9(4):e1003312. doi: 10.1371/journal.ppat.1003312.

[58]

Tsetsarkin KA, Mcgee CE, Volk SM, Vanlandingham DL, Weaver SC, Higgs S. Epistatic roles of E2 glycoprotein mutations in adaption of Chikungunya virus to Aedes albopictus and Ae. Aegypti mosquitoes. PLoS One 2009; 4(8):e6835. doi: 10.1371/journal.pone.0006835.

[59]

Rao D, KumarNagar P, Verma P, Joshi G, Singh A. Mapping and immunological response of immunodominant B and T cell epitopes of E2 glycoprotein of chikungunya virus. MOJ Immunol 2016; 4(1):1-8.

AI Summary AI Mindmap
PDF (1989KB)

278

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/