Antiviral immune responses in human reproductive tract: Pathogenic mechanisms and therapeutic implications

Kim-Ling Chin , Nurhafiza Zainal

Asian Pacific Journal of Tropical Medicine ›› 2025, Vol. 18 ›› Issue (2) : 67 -76.

PDF (317KB)
Asian Pacific Journal of Tropical Medicine ›› 2025, Vol. 18 ›› Issue (2) : 67 -76. DOI: 10.4103/apjtm.apjtm_491_24
REVIEW ARTICLE

Antiviral immune responses in human reproductive tract: Pathogenic mechanisms and therapeutic implications

Author information +
History +
PDF (317KB)

Abstract

Viral reproductive tract infections (VRTIs) are a significant global health concern with severe consequences, including infertility, chronic pelvic pain, and increased risk of HIV transmission. Complex interplay between pathogens and the host immune system plays a critical role in the pathogenesis and treatment of VRTIs. This review aims to provide a comprehensive overview of the multifaceted roles of the immune system in both contributing to and combating VRTIs. The review will also address the consequent perturbations in immune homeostasis and the implications for disease manifestation and progression. The interrelation between systemic immunity and local immune responses is discussed, providing insights into the challenges and breakthroughs in managing these infections. By providing a comprehensive overview of the mechanisms, implications, and therapeutic strategies associated with viral reproductive tract infections and immune dysfunction, this review also informs future research and clinical practice in this important area of reproductive health.

Keywords

Viral reproductive tract infections (VRTIs) / Immune response / Human papillomavirus (HPV) / Herpes simplex virus (HSV) / Cytomegalovirus (CMV) / Human immunodeficiency virus (HIV) / Zika virus (ZIKV) / Hepatitis B virus (HBV) / Hepatitis C virus (HCV)

Cite this article

Download citation ▾
Kim-Ling Chin, Nurhafiza Zainal. Antiviral immune responses in human reproductive tract: Pathogenic mechanisms and therapeutic implications. Asian Pacific Journal of Tropical Medicine, 2025, 18(2): 67-76 DOI:10.4103/apjtm.apjtm_491_24

登录浏览全文

4963

注册一个新账户 忘记密码

Conflict of interest statement

The authors declare that there is no conflict of interest.

Funding

This study was supported by the Universiti Malaya ArtScience Fellowship Grant (UMG004-2024IAS) and UM Community Engagement Grant 2023 (Project RUU002-23KS).

Authors’ contributions

K.L.C. conducted a comprehensive literature search and contributed to manuscript preparation. N.Z. contributed in the manuscript editing, reviewing, and refining the content. All the authors have reviewed and approved the final manuscript.

Publisher’s note

The Publisher of the Journal remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1]

Katawa G, Tchopba C, Ritter M, da Silva M, Ameyapoh A, Arndts K, et al. Female reproductive tract health: Prevalence and risk factors associated with infections in Lomé.(Female reproductive tract infections in Lomé). Clin Res Trials. 2021; 7: 1-9.

[2]

Balakrishnan S, Carolin A, Sudharsan B, Shivasakthimani R, Balasubramanian S. The prevalence of reproductive tract infections based on the syndromic management approach among ever-married rural women in Kancheepuram District, Tamil Nadu: A community-based cross-sectional study. Cureus 2022; 14(3). doi:10.7759/cureus.23314.

[3]

Garolla A, Pizzol D, Bertoldo A, Menegazzo M, Barzon L, Foresta C. Sperm viral infection and male infertility: Focus on HBV, HCV, HIV, HPV, HSV, HCMV, and AAV. J Reprod Immunol 2013; 100(1): 20-29.

[4]

Chan M, Smith M. Infections in pregnancy. Compr Toxicol 2018; 5: 232-249.

[5]

Hon K, Leung KK, Leung AK, Man E, Ip P. Congenital infections in Hong Kong: Beyond TORCH. Hong Kong Med J 2020; 26(4): 323-330.

[6]

Grayo S. Is the ZIKV congenital syndrome and microcephaly due to syndemism with latent virus coinfection? Viruses 2021; 13(4): 669.

[7]

Dos Santos T, Rodriguez A, Almiron M, Sanhueza A, Ramon P, de Oliveira WK, et al. Zika virus and the Guillain-Barré syndrome-case series from seven countries. N Engl J Med 2016; 375(16): 1598-1601.

[8]

Bowden SJ, Doulgeraki T, Bouras E, Markozannes G, Athanasiou A, Grout-Smith H, et al. Risk factors for human papillomavirus infection, cervical intraepithelial neoplasia and cervical cancer: An umbrella review and follow-up Mendelian randomisation studies. BMC Med 2023; 21(1): 274.

[9]

Chan YK, Gack MU. Viral evasion of intracellular DNA and RNA sensing. Nat Rev Microbiol 2016; 14(6): 360-373.

[10]

Sheldon IM, Owens SE, Turner ML. Innate immunity and the sensing of infection, damage and danger in the female genital tract. J Reprod Immunol 2017; 119: 67-73.

[11]

Wira CR, Grant-Tschudy KS, Crane-Godreau MA. Epithelial cells in the female reproductive tract: A central role as sentinels of immune protection. Am J Reprod Immunol 2005; 53(2): 65-76.

[12]

Plesniarski A, Siddik AB, Su RC. The microbiome as a key regulator of female genital tract barrier function. Front Cell Infect Microbiol 2021; 11: 1292.

[13]

Amjadi F, Salehi E, Mehdizadeh M, Aflatoonian R. Role of the innate immunity in female reproductive tract. Adv Biomed Res 2014; 3: 1.

[14]

Visnyaiová K, Varga I, Feitscherová C, Pavlíková L, Záhumenský J, Mikušová R. Morphology of the immune cells in the wall of the human uterine tube and their possible impact on reproduction-uterine tube as a possible immune privileged organ. Front Cell Dev Biol 2024; 12: 1325565.

[15]

Liu S, Diao L, Huang C, Li Y, Zeng Y, Kwak-Kim JY. The role of decidual immune cells on human pregnancy. J Reprod Immunol 2017; 124: 44-53.

[16]

Yüzen D, Arck PC, Thiele K. Tissue-resident immunity in the female and male reproductive tract. Semin Immunopathol 2022; 44(6): 785-799.

[17]

Beagley KW, Gockel CM. Regulation of innate and adaptive immunity by the female sex hormones oestradiol and progesterone. FEMS Immunol Med Microbiol 2003; 38(1): 13-22.

[18]

Okunade KS. Human papillomavirus and cervical cancer. J Obstet Gynaecol 2020; 40(5): 602-608.

[19]

Mittal S, Banks L. Molecular mechanisms underlying human papillomavirus E6 and E7 oncoprotein-induced cell transformation. Mutat Res Rev Mutat Res 2017; 772: 23-35.

[20]

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries . CA Cancer J Clin 2020; 71(3): 209-249.

[21]

Hirata Y, Kondo K, Yamanishi K. Human herpesvirus 6 downregulates major histocompatibility complex class Ⅰ in dendritic cells. J Med Virol 2001; 65(3): 576-583.

[22]

Smola S. Immunopathogenesis of HPV-associated cancers and prospects for immunotherapy. Viruses 2017; 9(9): 254.

[23]

Guess JC, McCance DJ. Decreased migration of Langerhans precursor-like cells in response to human keratinocytes expressing human papillomavirus type 16 E6/E7 is related to reduced macrophage inflammatory protein-3α production. J Virol 2005; 79(23): 14852-14862.

[24]

Bonin CM, Padovani CT, Ferreira AMT, Ávila LS, Machado AP, Prata T, et al. Predominant overexpression of CD25/FOXP3, IFN-γ and suppressive cytokines in high-grade lesion samples infected with human papillomavirus. J Bras Patol Med Lab 2017; 53: 53-60.

[25]

Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J Hematol Oncol 2019; 12(1): 76.

[26]

Pittet LF, Curtis N. Postnatal exposure to herpes simplex virus: To treat or not to treat? Pediatr Infect Dis J 2021; 40(5S): S16-S21.

[27]

Lafferty WE, Coombs RW, Benedetti J, Critchlow C, Corey L. Recurrences after oral and genital herpes simplex virus infection. N Engl J Med 1987; 316(23): 1444-1449.

[28]

Spicknall IH, Flagg EW, Torrone EA. Estimates of the prevalence and incidence of genital herpes, United States,2018. Sex Transm Dis 2021; 48(4): 260-265.

[29]

AlMukdad S, Harfouche M, Wettstein A, Abu-Raddad LJ. Epidemiology of herpes simplex virus type 2 in Asia: A systematic review, meta-analysis, and meta-regression. Lancet Reg Health West Pac 2021; 12: 100176.

[30]

Praest P, Liaci AM, Förster F, Wiertz EJ. New insights into the structure of the MHC class Ⅰ peptide-loading complex and mechanisms of TAP inhibition by viral immune evasion proteins. Mol Immunol 2019; 113: 103-114.

[31]

Pierce CA, Loh LN, Preston-Hurlburt P, Herold KC, Herold BC. HSV-2 infects T follicular helper cells to promote HIV reactivation. J Immunol 2020; 204(Suppl_1). doi: 10.4049/jimmunol.204.Supp.247.24.

[32]

Grosche L, Mühl-Zürbes P, Ciblis B, Krawczyk A, Kuhnt C, Kamm L, et al. Herpes simplex virus type-2 paralyzes the function of monocyte-derived dendritic cells. Viruses 2020; 12(1): 112.

[33]

Yanez AA, Harrell T, Sriranganathan HJ, Ives AM, Bertke AS. Neurotrophic factors NGF, GDNF and NTN selectively modulate HSV1 and HSV2 lytic infection and reactivation in primary adult sensory and autonomic neurons. Pathogens 2017; 6(1): 5.

[34]

Zuhair M, Smit GSA, Wallis G, Jabbar F, Smith C, Devleesschauwer B, et al. Estimation of the worldwide seroprevalence of cytomegalovirus: A systematic review and meta-analysis. Rev Med Virol 2019; 29(3): e2034.

[35]

Styczynski J. Who is the patient at risk of CMV recurrence: A review of the current scientific evidence with a focus on hematopoietic cell transplantation. Infect Dis Ther 2018; 7: 1-16.

[36]

Dowling PC, Cook SD. Role of infection in Guillain-Barré syndrome: Laboratory confirmation of herpesviruses in 41 cases. Ann Neurol 1981; 9(Suppl_1): 44-55.

[37]

Schleiss MR. Congenital cytomegalovirus infection: Molecular mechanisms mediating viral pathogenesis. Infect Disord Drug Targets 2011; 11(5): 449-465.

[38]

Varani S, Landini MP. Cytomegalovirus-induced immunopathology and its clinical consequences. Herpesviridae 2011; 2: 1-14.

[39]

Griffin D. Potential mechanisms of immune suppression. In: Nathanson N. (ed.) Viral Pathogenesis, Philadelphia, PA: Lippincott-Raven; 1996, p. 207-235.

[40]

Kotenko SV, Saccani S, Izotova LS, Mirochnitchenko OV, Pestka S. Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc Natl Acad Sci U S A 2000; 97(4): 1695-1700.

[41]

Siddiquey MN, Zhang H, Nguyen CC, Domma AJ, Kamil JP. The human cytomegalovirus endoplasmic reticulum-resident glycoprotein UL148 activates the unfolded protein response. J Virol 2018; 92(20): e00896-18.

[42]

Sharma A, Marfatia Y, Modi M. Reproductive tract infections in HIV positive women: A case control study. Indian J Sex Transm Dis AIDS 2009; 30(1): 16-18.

[43]

Del Rio C. The global HIV epidemic: What the pathologist needs to know. Semin Diagn Pathol 2017; 4: 314-317.

[44]

Haller C, Müller B, Fritz JV, Lamas-Murua M, Stolp B, Pujol FM, et al. HIV-1 Nef and Vpu are functionally redundant broad-spectrum modulators of cell surface receptors, including tetraspanins. J Virol 2014; 88(24): 14241-14257.

[45]

Cerboni C, Neri F, Casartelli N, Zingoni A, Cosman D, Rossi P, et al. Human immunodeficiency virus 1 Nef protein downmodulates the ligands of the activating receptor NKG2D and inhibits natural killer cell-mediated cytotoxicity. J Gen Virol 2007; 88(1): 242-250.

[46]

van Stigt Thans T, Akko JI, Niehrs A, Garcia-Beltran WF, Richert L, Stürzel CM, et al. Primary HIV-1 strains use Nef to downmodulate HLA-E surface expression. J Virol 2019; 93(20): 110-128.

[47]

Kaufmann DE, Walker BD. PD-1 and CTLA-4 inhibitory cosignaling pathways in HIV infection and the potential for therapeutic intervention. J Immunol 2009; 182(10): 5891-5897.

[48]

Paiardini M, Müller-Trutwin M. HIV-associated chronic immune activation. Immunol Rev 2013; 254(1): 78-101.

[49]

WHO. Zika virus, microcephaly and Guillain-Barré syndrome situation report 2016. [Online]. Available from: https://iris.who.int/handle/10665/242439. [Accessed on 13 February 2025].

[50]

Atkinson B, Thorburn F, Petridou C, Bailey D, Hewson R, Simpson AJ, et al. Presence and persistence of Zika virus RNA in semen, United Kingdom, 2016. Emerg Infect Dis 2017; 23(4): 611.

[51]

Grant A, Ponia SS, Tripathi S, Balasubramaniam V, Miorin L, Sourisseau M, et al. Zika virus targets human STAT2 to inhibit type Ⅰ interferon signaling. Cell Host Microbe 2016; 19(6): 882-890.

[52]

Ding Q, Gaska JM, Douam F, Wei L, Kim D, Balev M, et al. Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B 3 protease. Proc Natl Acad Sci U S A 2018; 115(27): E6310-E6318.

[53]

Sarratea MB, Alberti AS, Redolfi DM, Truant SN, Lopez LVI, Bivona AE, et al. Zika virus NS4B protein targets TANK-binding kinase 1 and inhibits type Ⅰ interferon production. Biochim Biophys Acta Gen Subj 2023; 1867(12): 130483.

[54]

Xia H, Luo H, Shan C, Muruato AE, Nunes BT, Medeiros DB, et al. An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction. Nat Commun 2018; 9(1): 1-13.

[55]

Riedl W, Acharya D, Lee JH, Liu G, Serman T, Chiang C, et al. Zika virus NS 3 mimics a cellular 14-3-3-binding motif to antagonize RIG-I-and MDA5-mediated innate immunity. Cell Host Microbe 2019; 26(4): 493-503.

[56]

de Carvalho GC, Borget MY, Bernier S, Garneau D, da Silva Duarte AJ, Dumais N, RAGE and CCR7 mediate the transmigration of Zika-infected monocytes through the blood-brain barrier. Immunobiology 2019; 224(6): 792-803.

[57]

Chin KL, Zainal N, Sam SS, Hassandarvish P, Lani R, AbuBakar S. Intracellular translocation of HMGB1 is important for Zika virus replication in Huh7 cells. Sci Rep 2022; 12(1): 1054.

[58]

Chin KL, Zainal N, Sam SS, Abu Bakar S. Resveratrol treatment-induced nuclear HMGB1 retention is critical for inducing host interferon responses against Zika virus. Nat Prod J 2023; 13(6): 91-107.

[59]

WHO. Global viral hepatitis:Millions of people are affected 2021. [Online]. Available from: https://www.cdc.gov/hepatitis/global/index.htm. [Accessed on 13 February 2025].

[60]

Wang Z, Liu W, Zhang M, Wang M, Wu H, Lu M. Effect of hepatitis B virus infection on sperm quality and outcomes of assisted reproductive techniques in infertile males. Front Med (Lausanne) 2021; 8: 744350.

[61]

Bourdon M, Garnier A, Maignien C, Marcellin L, Dulioust E, Sogni P, et al. Assisted reproductive technology outcomes in women with a chronic viral disease. AIDS 2021; 35(7): 1073-1081.

[62]

Kushner T, Djerboua M, Biondi MJ, Feld JJ, Terrault N, Flemming JA. Influence of hepatitis C viral parameters on pregnancy complications and risk of mother-to-child transmission. J Hepatol 2022; 77(5): 1256-1264.

[63]

Zheng P, Dou Y, Wang Q. Immune response and treatment targets of chronic hepatitis B virus infection: Innate and adaptive immunity. Front Cell Infect Microbiol 2023; 13: 1206720.

[64]

Lin W, Kim SS, Yeung E, Kamegaya Y, Blackard JT, Kim KA, et al. Hepatitis C virus core protein blocks interferon signaling by interaction with the STAT1 SH2 domain. J Virol 2006; 80(18): 9226-9235.

[65]

Fisicaro P, Barili V, Rossi M, Montali I, Vecchi A, Acerbi G, et al. Pathogenetic mechanisms of T cell dysfunction in chronic HBV infection and related therapeutic approaches. Front Immunol 2020; 11: 849.

[66]

Dai B, Chen AY, Corkum CP, Peroutka RJ, Landon A, Houng S, et al. Hepatitis C virus upregulates B-cell receptor signaling: A novel mechanism for HCV-associated B-cell lymphoproliferative disorders. Oncogene 2016; 35(23): 2979-2990.

[67]

Schiller J, Lowy D. Explanations for the high potency of HPV prophylactic vaccines. Vaccine 2018; 36(32): 4768-4773.

[68]

Lu B, Kumar A, Castellsagué X, Giuliano AR. Efficacy and safety of prophylactic vaccines against cervical HPV infection and diseases among women: A systematic review & meta-analysis. BMC Infect Dis 2011; 11: 1-16.

[69]

Trimble CL, Morrow MP, Kraynyak KA, Shen X, Dallas M, Yan J, et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: A randomised, double-blind, placebo-controlled phase 2b trial. Lancet 2015; 386(10008): 2078-2088.

[70]

Gao P, Lazare C, Cao C, Meng Y, Wu P, Zhi W, et al. Immune checkpoint inhibitors in the treatment of virus-associated cancers. J Hematol Oncol 2019; 12: 1-10.

[71]

Kuske M, Haist M, Jung T, Grabbe S, Bros M. Immunomodulatory properties of immune checkpoint inhibitors-more than boosting T-cell responses? Cancers (Basel) 2022; 14(7): 1710.

[72]

Mustafayev K, Mallet V, Torres HA. Management of hepatitis B virus and hepatitis C virus infections in patients with cancer receiving immune checkpoint inhibitors. J Immunother Precis Oncol 2024; 7(2): 111-121.

[73]

Ziogas DC, Kostantinou F, Cholongitas E, Anastasopoulou A, Diamantopoulos P, Haanen J, et al. Reconsidering the management of patients with cancer with viral hepatitis in the era of immunotherapy. J Immunother Cancer 2020; 8(2): e000943.

[74]

Dropulic LK, Oestreich MC, Pietz HL, Laing KJ, Hunsberger S, Lumbard K, et al. A randomized, double-blinded, placebo-controlled, phase 1 study of a replication-defective herpes simplex virus (HSV) type 2 vaccine, HSV529, in adults with or without HSV infection. J Infect Dis 2019; 220(6): 990-1000.

[75]

Hook LM, Awasthi S, Cairns TM, Alameh MG, Fowler BT, Egan KP, et al. Antibodies to crucial epitopes on HSV-2 glycoprotein D as a guide to dosing an mRNA genital herpes vaccine. Viruses 2022; 14(3): 540.

[76]

Harrison CJ, Miller RL, Bernstein DI. Posttherapy suppression of genital herpes simplex virus (HSV) recurrences and enhancement of HSV-specific T-cell memory by imiquimod in guinea pigs. Antimicrob Agents Chemother 1994; 38(9): 2059-2064.

[77]

Conant MA. Immunomodulatory therapy in the management of viral infections in patients with HIV infection. J Am Acad Dermatol 2000; 43(1): S27-S30.

[78]

Nakamura R, La Rosa C, Yang D, Hill JA, Rashidi A, Choe H, et al. A Phase Ⅱ randomized, double-blind, placebo-controlled, multicenter trial to evaluate the efficacy of cmvpepvax for preventing CMV reactivation/ disease after matched related/unrelated donor hematopoietic cell transplant. Blood 2021; 138: 2887.

[79]

Bernstein DI, Munoz FM, Callahan ST, Rupp R, Wootton SH, Edwards KM, et al. Safety and efficacy of a cytomegalovirus glycoprotein B (gB) vaccine in adolescent girls: A randomized clinical trial. Vaccine 2016; 34(3): 313-319.

[80]

Whitacre T. mRNA-1647: A promising CMV vaccine advances to phase 3 trial. Infect Control Today 2023. [Online]. Available from: Gale Academic OneFile, link.gale.com/apps/doc/A777426371/AONE?u=anon-ed5ff46d&sid=googleScholar&xid=d169f726. [Accessed on 13 February 2025].

[81]

Geurten C, Ghinai R, Munford H, Lawson S. Efficacy of cytomegalovirus specific immunoglobulins to reduce CMV reactivation in pediatric hematopoietic stem cell transplant recipients. J Pediatr Hematol Oncol 2023; 45(1): e82-e86.

[82]

Smith C, Beagley L, Rehan S, Neller MA, Crooks P, Solomon M, et al. Autologous adoptive T-cell therapy for recurrent or drug-resistant cytomegalovirus complications in solid organ transplant recipients: A single-arm open-label phase Ⅰ clinical trial. Clin Infect Dis 2019; 68(4): 632-640.

[83]

Cohen KW, De Rosa SC, Fulp WJ, deCamp AC, Fiore-Gartland A, Mahoney CR, et al. A first-in-human germline-targeting HIV nanoparticle vaccine induced broad and publicly targeted helper T cell responses. Sci Transl Med 2023; 15(697): eadf3309.

[84]

June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science 2018; 359(6382): 1361-1365.

[85]

Delagrèverie HM, Delaugerre C, Lewin SR, Deeks SG, Li JZ. Ongoing clinical trials of human immunodeficiency virus latency-reversing and immunomodulatory agents. Open Forum Infect Dis 2016; 3(4): ofw189.

[86]

Li Y, Hong J, Zhang L. The rational combination strategy of immunomodulatory latency reversing agents and novel immunotherapy to achieve HIV-1 cure. Infect Dis Immun 2022; 2(4): 263-273.

[87]

Wang Y, Ling L, Zhang Z, Marin-Lopez A. Current advances in Zika vaccine development. Vaccines 2022; 10(11): 1816.

[88]

Liu X, Li Z, Li X, Wu W, Jiang H, Zheng Y, et al. A single-dose circular RNA vaccine prevents Zika virus infection without enhancing dengue severity in mice. Nat Commun 2024; 15(1): 8932.

[89]

Adams C, Carbaugh DL, Shu B, Ng TS, Castillo IN, Bhowmik R, et al. Structure and neutralization mechanism of a human antibody targeting a complex Epitope on Zika virus. PLoS Pathog 2023; 19(1): e1010814.

[90]

Hu H, Feng Y, He ML. Targeting type Ⅰ interferon induction and signaling: How Zika virus escapes from host innate immunity. Int J Biol Sci 2023; 19(10): 3015.

[91]

U.S. FDA. Hepatitis B vaccine (recombinant) 2018. [Online]. Available from: https://www.fda.gov/vaccines-blood-biologics/hepatitis-b-vaccine-recombinant. [Accessed on 13 February 2025].

[92]

Elbahrawy A, Atalla H, Alboraie M, Alwassief A, Madian A, El Fayoumie M, et al. Recent advances in protective vaccines against hepatitis viruses: A narrative review. Viruses 2023; 15(1): 214.

[93]

Huang YW, Qin A, Tsai CY, Chen PJ. Novel pegylated interferon for the treatment of chronic viral hepatitis. Viruses 2022; 14(6): 1128.

[94]

Rakké YS, Sprengers D, Kwekkeboom J, IJzermans JNM. Camrelizumab-targeting a novel PD-1 epitope to treat hepatocellular carcinoma. AnnTransl Med 2020; 8(23): 1614.

[95]

Zhou J, Chen G, Wang J, Zhou B, Sun X, Wang J, et al. Anti-PD-1 therapy achieves favorable outcomes in HBV-positive non-liver cancer. Oncogenesis 2023; 12(1): 22.

AI Summary AI Mindmap
PDF (317KB)

484

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/