An epidemiological study of malaria parasites among long-tailed macaques (Macaca fascicularis), pig-tailed macaques (Macaca nemestrina) and silver-leaf monkeys (Trachypithecus cristatus) in Sumatra Region, Indonesia

Sarwo Handayani , Rita Marleta Dewi , Lucia Dwi Antika , Novaria Sari Dewi Panjaitan

Asian Pacific Journal of Tropical Medicine ›› 2025, Vol. 18 ›› Issue (1) : 10 -17.

PDF (468KB)
Asian Pacific Journal of Tropical Medicine ›› 2025, Vol. 18 ›› Issue (1) : 10 -17. DOI: 10.4103/apjtm.apjtm_310_24
ORIGINAL ARTICLE

An epidemiological study of malaria parasites among long-tailed macaques (Macaca fascicularis), pig-tailed macaques (Macaca nemestrina) and silver-leaf monkeys (Trachypithecus cristatus) in Sumatra Region, Indonesia

Author information +
History +
PDF (468KB)

Abstract

Objective:To ascertain the prevalence and distribution of malaria parasites among the three monkeys species from three provinces in Sumatra Island, Indonesia.

Methods:Infections with Plasmodium spp. were determined morphologically from the blood smears which were stained with Giemsa solution and molecularly through nested polymerase chain reaction (PCR) in DNA samples from 68 primates, which were captured at three locations: Jambi (Bungo district), Bengkulu (Muko-Muko district), and Riau Islands (Lingga district).

Results: Out of 68 samples analyzed, 46 were positive for various Plasmodium species, including Plasmodium knowlesi, Plasmodium cynamolgi, Plasmodium inui, and Plasmodium coatneyi. Over one-third of the population exhibited multiple infections, with Plasmodium inui being the most predominant strain.

Conclusions: The high prevalence of multiple malaria infections in monkeys, coupled with the rising reports of primate malaria cases in human raises questions about the potential for human transmission. These findings emphasize the necessity for ongoing monitoring and endeavors to comprehend and alleviate the risk of zoonotic malaria transmission, particularly in areas experiencing environmental changes.

Keywords

Malaria parasites / Non-human primates / Sumatra

Cite this article

Download citation ▾
Sarwo Handayani, Rita Marleta Dewi, Lucia Dwi Antika, Novaria Sari Dewi Panjaitan. An epidemiological study of malaria parasites among long-tailed macaques (Macaca fascicularis), pig-tailed macaques (Macaca nemestrina) and silver-leaf monkeys (Trachypithecus cristatus) in Sumatra Region, Indonesia. Asian Pacific Journal of Tropical Medicine, 2025, 18(1): 10-17 DOI:10.4103/apjtm.apjtm_310_24

登录浏览全文

4963

注册一个新账户 忘记密码

Conflict of interest statement

The authors declare no conflicts of interest.

Funding

Funding was obtained from the Center of Research and Development for Biomedical and Basic Health Technology of The National Institute of Research and Development, the Ministry of Health (Reference No HK.02.04/II/4579/2015).

Authors’ contributions

SH and RMD: conceptualization, design of the study and definition of intellectual content, literature search, perform the experimental studies, data acquisition and analysis, manuscript preparation and review, and as the guarantor. LDA and NSDP: literature search, manuscript preparation, review and editing. All authors read and approved the final manuscript.

Publisher’s note

The Publisher of the Journal remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgements

The authors extend gratitude to the Center of Research and Development for Biomedical and Basic Health Technology of The National Institute of Research and Development, the Ministry of Health, for funding this research (Reference No. HK.02.04/ 11/4579/2015). Special appreciation is also extended to Ervi Salwati for granting permission to utilize certain data for this publication. The authors also would like to thank the regional officers and local communities who assisted in sample collection.

References

[1]

World Health Organization. World malaria report 2022. Available from: http://www.whoInt2022. [Accessed on 28 June 2023].

[2]

Perkins SL, Austin CC. Four new species of Plasmodium from New Guinea lizards: Integrating morphology and molecules. J Parasitol 2009; 95(2): 424-433. https://doi.org/10.1645/GE-1750.1.

[3]

Ramasamy R. Zoonotic malaria-global overview and research and policy needs. Front Public Heal 2014; 2: 123. https://doi.org/10.3389/fpubh.2014.00123.

[4]

Akbar MA, Perwitasari-Farajallah D, Rizaldi, Mardiastuti A, Ikhsan M, FebriamansyahTA, et al. Ranging behavior of wild silvery lutungs (Trachypithecus cristatus) in the coastal forest of West Sumatra, Indonesia. Int J Primatol 2024; 45: 913-931. https://doi.org/10.1007/s10764-024-00425-7.

[5]

van deStraat B, Sebayang B, Grigg MJ, Staunton K, Garjito TA, Vythilingam I, et al. Zoonotic malaria transmission and land use change in Southeast Asia: What is known about the vectors. Malar J 2022; 21: 109. https://doi.org/10.1186/s12936-022-04129-2.

[6]

Grüring C, Moon RW, Lim C, Holder AA, Blackman MJ, Duraisingh MT. Human red blood cell-adapted Plasmodium knowlesi parasites: A new model system for malaria research. Cell Microbiol 2014; 16(5): 612-620. https://doi.org/https://doi.org/10.1111/cmi.12275.

[7]

Lim C, Dankwa S, Paul AS, Duraisingh MT. Host cell tropism and adaptation of blood-stage malaria parasites: Challenges for malaria elimination. Cold Spring Harb Perspect Med 2017; 7(11): a025494. https://doi.org/10.1101/cshperspect.a025494.

[8]

Peterson MS, Joyner CJ, Brady JA, Wood JS, Mora MC, Saney CL, et al. Clinical recovery of Macaca fascicularis infected with Plasmodium knowlesi. Malar J 2021; 20(1): 486. https://doi.org/10.1186/s12936-021-03925-6.

[9]

Sugaram R, Boondej P, Srisutham S, Kunasol C, Pagornrat W, Boonyuen U, et al. Genetic population of Plasmodium knowlesi during pre-malaria elimination in Thailand. Malar J 2021; 20(1): 454. https://doi.org/10.1186/s12936-021-03990-x.

[10]

White NJ. Plasmodium knowlesi: The fifth human malaria parasite. Clin Infect Dis 2008; 46(2):172-173. https://doi.org/10.1086/524889.

[11]

Nursafingi A, Widayani P, Purwoko S, Bhermana A. Determinants of malaria from environmental and poverty aspects in Indonesia: A spatiotemporal perspective, 2016-2020. Asian Pac J Trop Med 2024; 17(6): 256-267.

[12]

Setiadi W, Sudoyo H, Trimarsanto H, Sihite BA, Saragih RJ, Juliawaty R, et al. A zoonotic human infection with simian malaria, Plasmodium knowlesi, in Central Kalimantan, Indonesia. Malar J 2016; 15: 218. https://doi.org/10.1186/s12936-016-1272-z.

[13]

Lubis IND, Wijaya H, Lubis M, Lubis CP, Divis PCS, Beshir KB, et al. Contribution of Plasmodium knowlesi to multispecies human malaria infections in North Sumatera, Indonesia. J Infect Dis 2017; 215(7): 1148-1155. https://doi.org/10.1093/infdis/jix091.

[14]

Herdiana H, Irnawati I, Coutrier FN, Munthe A, Mardiati M, Yuniarti T, et al. Two clusters of Plasmodium knowlesi cases in a malaria elimination area, Sabang Municipality, Aceh, Indonesia. Malar J 2018; 17(1): 186. https://doi.org/10.1186/s12936-018-2334-1.

[15]

Ompusunggu S, Dewi RM, Yuliawaty R, Sihite BA, Ekowatiningsih R, Siswantoro H, et al. New discovery of Plasmodium knowlesi in humans in Central Kalimantan. Indones Bull Health Res 2015; 43(2): 63-76. https://doi.org/10.22435/bpk.v43i2.4140.63-76.

[16]

Salwati E, Handayani S,and Dewi R, New cases of Plasmodium knowlesi infection in humans in Jambi. Biotek Medisiana Indonesia 2017; 6(1): 39-51.

[17]

Jeslyn WPS, Huat TC, Vernon L, Irene LMZ, Sung LK, Jarrod LP, et al. Molecular epidemiological investigation of Plasmodium knowlesi in humans and macaques in Singapore. Vector Borne Zoonotic Dis 2011; 11(2): 131-135. https://doi.org/10.1089/vbz.2010.0024.

[18]

Pongvongsa T, Culleton R, Ha H, Thanh L, Phongmany P, Marchand RP, et al. Human infection with Plasmodium knowlesi on the Laos-Vietnam border 11 medical and health sciences 1108 medical microbiology. Trop Med Health 2018; 46: 33. https://doi.org/10.1186/s41182-018-0116-7.

[19]

Iwagami M, Nakatsu M, Khattignavong P, Soundala P, Lorphachan L, Keomalaphet S, et al. First case of human infection with Plasmodium knowlesi in Laos. PLoS Negl Trop Dis 2018; 12(3): e0006244. https://doi.org/10.1371/journal.pntd.0006244.

[20]

Ta TH, Hisam S, Lanza M, Jiram AI, Ismail N, Rubio JM. First case of a naturally acquired human infection with Plasmodium cynomolgi. Malar J 2014; 13: 68. https://doi.org/10.1186/1475-2875-13-68.

[21]

Imwong M, Madmanee W, Suwannasin K, Kunasol C, Peto TJ, Tripura R, et al. Asymptomatic natural human infections with the simian malaria parasites Plasmodium cynomolgi and Plasmodium knowlesi. J Infect Dis 2019; 219(5): 695-702. https://doi.org/10.1093/infdis/jiy519.

[22]

Hartmeyer GN, Stensvold CR, Fabricius T, Marmolin ES, Hoegh SV, Nielsen HV, et al. Plasmodium cynomolgi as cause of malaria in tourist to Southeast Asia, 2018. Emerg Infect Dis 2019; 25(10): 1936-1939. https:// doi.org/10.3201/eid2510.190448.

[23]

Liew JWK, Bukhari FDM, Jeyaprakasam NK, Phang WK, Vythilingam I, Lau YL. Natural Plasmodium inui infections in humans and Anopheles cracens mosquito, malaysia. Emerg Infect Dis 2021; 27(10): 2700-2703. https://doi.org/10.3201/eid2710.210412.

[24]

Yap NJ, Hossain H, Nada-raja T, Ngui R, Muslim A, Hoh B, et al. Natural human infections with Plasmodium cynomolgi, P. inui, and 4 other simian malaria parasites, Malaysia. Emerg Infect Dis 2021; 27(8): 2187-2191. https://doi.org/10.3201/eid2708.204502.

[25]

Sugiarto SR, Baird JK, Singh B, Elyazar I, Davis TME. The history and current epidemiology of malaria in Kalimantan, Indonesia. Malar J 2022; 21(1): 327. https://doi.org/10.1186/s12936-022-04366-5.

[26]

Nasir D. Population, behaviour and conservation status of long-tailed macaque, Macaca fascicularis and southern pig-tailed macaque, Macaca nemestrina in Paya Bakau Park, Perak, Malaysia. J Anim Plant Sci 2019; 29(2): 611-618.

[27]

Permana DH, Hasmiwati, Suryandari DA, RoziI E, Syahrani L, Setiadi W, et al. The potential for zoonotic malaria transmission in five areas of Indonesia inhabited by non-human primates. Parasit Vectors 2023; 16: 267. https://doi.org/10.1186/s13071-023-05880-4.

[28]

Tobin RJ, Harrison LE, Tully MK, Lubis IND, Noviyanti R, Anstey NM, et al. Updating estimates of Plasmodium knowlesi malaria risk in response to changing land use patterns across Southeast Asia. PLoS Negl Trop Dis 2024; 18(1): e0011570. https://doi.org/10.1101/2023.08.04.23293633.

[29]

Bowen WH, Koch G. Determination of age in monkeys (Macaca irus) on the basis of dental development. Lab Anim 1970; 4(1): 113-124. https://doi.org/10.1258/002367770781036481.

[30]

Singh B, Bobogare A, Cox-Singh J, Snounou G, Abdullah MS, Rahman HA. A genus- and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies. Am J Trop Med Hyg 1999; 60(4): 687-692. https://doi.org/10.4269/ajtmh.1999.60.687.

[31]

Lee KS, Divis P, Zakaria SK, Matusop A, Julin RA, Conwin DJ, et al. Plasmodium knowlesi: Reservoir hosts and tracking the emergence in humans and macaques. PLoS Pathog 2011; 7(4): e1002015. https://doi.org/10.1371/journal.ppat.1002015.

[32]

U.S. Centers for Disease Control and Prevention. Malaria diagnostic tests (Microscopy). [Online]. Available from: https://www.cdc.gov/malaria/hcp/diagnosis-testing/malaria-diagnostic-tests.html#:-:text=Malaria%20microscopy%20is%20a%20well,present%20in%20the%20patient's%20blood. [Accessed on 24 May 2024].

[33]

World Health Organization. Nucleic acid amplification-based diagnostics. Available from: https://www.who.int/teams/global-malaria-programme/case-management/diagnosis/nucleic-acid-amplification-based-diagnostics. [Accessed on 1 March 2024].

[34]

Kesumawati U, Rosmanah L, Soviana S, Saepuloh U, Darusman S. Morphological features and molecular of Plasmodium inui in Macaca fascicularis from Bogor, West Java. In:Proceedings of the 2nd International Conference on Veterinary, Animal, and Environmental Sciences; 22-23 October 2020; Banda Aceh, Indonesia. Red Hook, NY: Atlantis Press; 2021; p. 193-196.

[35]

Collins WE. Plasmodium knowlesi: A malaria parasite of monkeys and humans. Annu Rev Entomol 2012; 57: 107-127. https://doi.org/10.1146/annurev-ento-121510-133540.

[36]

Lee KS, Cox-Singh J, Singh B. Morphological features and differential counts of Plasmodium knowlesi parasites in naturally acquired human infections. Malar J 2009; 8: 73. https://doi.org/10.1186/1475-2875-8-73.

[37]

Mahittikorn A, Masangkay FR, Kotepui KU, De G. Quantification of the misidentification of Plasmodium knowlesi as Plasmodium malariae by microscopy: An analysis of 1569 P. knowlesi cases. Malar J 2021; 20(1): 179. https://doi.org/10.1186/s12936-021-03714-1.

[38]

Ilham K, Rizaldi R, Nurdin J, Tsuji Y. Status of urban populations of the long-tailed macaque (Macaca fascicularis) in West Sumatra, Indonesia. Primates 2017; 58(2): 295-305.

[39]

Gumert MD, Rachmawan D, Iskandar E, Pamungkas J. Population of the long-tailed macaques (Macaca fascicularis) at Tanjung Puting Nation Park, Central Kalimantan. Indones Primatol J 2012; 9(1): 3-12.

[40]

Kusumadewi MR, Soma IG, Wandia IN. Geographic distribution of the long-tailed monkey (Macaca fascicularis) population on the Bandung Peninsula. J Ilmu Dan Kesehatan Hewan 2014; 2: 39-47.

[41]

HadiI , Suryobroto B, Watanabe K, Anthropogenic influences on the sosioecology of long-tailed macaques (Macaca fascicularis) in Lombok Island, Indonesia. Indones J Biol 2012; 8(1): 1-7.

[42]

Mak J, Choong M, Lam P, Suresh K. Experimental infection of the leaf-monkeys, Presbytis cristata and Presbytis melalophos with subperiodic Brugia malayi. Acta Trop 1990; 47(4): 223-226. https://doi.org/10.1016/0001-706x(90)90013-p.

[43]

Engelhardt A, Muniz L. Highly polymorphic microsatellite markers for the assessment of male reproductive skew and genetic variation in critically endangered crested macaques (Macaca nigra). Int J Primatol 2017; 38(4): 672-691. https://doi.org/10.1007/s10764-017-9973-x.

[44]

Yan X, Terai Y, Widayati KA, Itoigawa A. Functional divergence of the pigmentation gene in six endemic Macaca species on Sulawesi Island. Sci Rep 2022; 12: 7593. https://doi.org/10.1038/s41598-022-11681-z.

[45]

Fungfuang W, Udom C, Tongthainan D, Kadir KA, Singh B. Malaria parasites in macaques in Thailand: Stump-tailed macaques (Macaca arctoides) are new natural hosts for Plasmodium knowlesi, and Plasmodium fieldi. Malar J 2020; 19(1): 350. https://doi.org/10.1186/s12936-020-03424-0.

[46]

Gamalo LE, Dimalibot J, Kadir KA, Singh B, Paller VG. Plasmodium knowlesi and other malaria parasites in long-tailed macaques from the Philippines. Malar J 2019; 18(1): 147. https://doi.org/10.1186/s12936-019-2780-4.

[47]

Faust C, Dobson AP. Primate malarias: Diversity, distribution and insights for zoonotic Plasmodium. One Health 2015; 1: 66-75. https://doi.org/10.1186/s12936-019-2780-4.

[48]

Su XZ, Wu J. Zoonotic transmissions and host switches of malaria parasites. Zoonoses (Burlingt) 2021; 1(1): 11. https://doi.org/10.15212/zoonoses-2021-0015.

AI Summary AI Mindmap
PDF (468KB)

223

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/