Trigonelline exerts its neuroprotective effects in experimental spinal cord injury through modulation of inflammation, apoptosis, and neurotrophic factors
Zhi-Lan Ye , Yuan Cao
Asian Pacific Journal of Tropical Biomedicine ›› 2025, Vol. 15 ›› Issue (1) : 34 -42.
Trigonelline exerts its neuroprotective effects in experimental spinal cord injury through modulation of inflammation, apoptosis, and neurotrophic factors
Objective: To assess the protective effects of trigonelline against spinal cord injury (SCI) in rats.
Methods: Rats (Sprague-Dawley, male) were randomly assigned to seven groups (n=15 per group): normal, sham, SCI control (1% DMSO), methylprednisolone (30 mg/kg), and trigonelline (50, 100, and 200 mg/kg). Rats received respective treatment daily for 28 days. SCI was induced by using a temporary aneurysm clip. Behavioral, biochemical, and histological analyses were performed to investigate the neuroprotective effect of trigonelline.
Results: Trigonelline (100 and 200 mg/kg) treatment effectively (P<0.05) mitigated SCI-induced changes in mechano-tactile sensation, allodynia, hyperalgesia, and motor nerve conduction velocity. It notably (P<0.05) downregulated apoptotic (Bax and caspase-3) and inflammatory (COX-II) markers, while upregulating Bcl-2 and BDNF mRNA expression in the spinal cord (P<0.05). Furthermore, trigonelline effectively alleviated (P<0.05) SCI-induced alterations in mitochondrial complex levels, resulting in enhanced nicotinamide adenine dinucleotide dehydrogenase, succinate dehydrogenase, redox activity, and cytochrome-C levels. Histological examination of spinal cord tissue indicated that trigonelline significantly (P<0.05) ameliorated the histological damage caused by SCI, thereby improving neuronal degeneration, inflammatory cell infiltration, and necrosis.
Conclusions: Trigonelline shows neuroprotective properties in SCI rats by reducing allodynia, hyperalgesia, and inflammation, stabilizing mitochondrial enzyme complexes, and modulating apoptotic and neurotrophic factors. Thus, trigonelline holds promise as a potential neuroprotective agent.
Bax / Bcl-2 / BDNF / COX-II / Spinal cord injury / Trigonelline
| [1] |
World Health Organization. 2024. Spinal cord injury. [Online] Available from: https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury [Accessed on 16 April 2024]. |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
/
| 〈 |
|
〉 |