Objective: To examine the protective effect of saikosaponin D against streptozotocin (STZ)-induced gestational diabetes mellitus in female rats.
Methods: Intraperitoneal administration of STZ (40 mg/kg) was used for the induction of diabetes in pregnant rats, and rats orally received sikosaponin D (10, 20, and 40 mg/kg). The body weight, placental weight, fetal weight, fetal index, and various biochemical parameters, including antioxidant, glucose level, cytokines, and apoptosis parameters, were estimated. The expression levels of various mRNAs were also analyzed.
Results: Saikosaponin D increased body weight and fetal weight while decreasing placental weight and placental index. Saikosaponin D significantly altered various biochemical parameters such as fasting blood glucose, glycated hemoglobin (HbA1c), hemoglobin, hepatic glycogen, advanced glycation end products, lipid parameters (total cholesterol, triglyceride, low density lipoprotein, high density lipoprotein, very low density lipoprotein), antioxidant parameters (superoxide dismutase, glutathione, glutathione peroxidase, malonaldehyde, catalase), inflammatory cytokines (tumor necrosis factor-a, interleukin-6, interleukin-1β, interleukin-10), apoptosis parameters (Bcl-2, Bax, caspase-3), resistin, adiponectin, leptin, intercellular adhesion molecule 1, vascular cell adhesion molecule-1, and monocyte chemotactic protein-1. Furthermore, saikosaponin D modulated the mRNA expression of TLR4, MyD88, NF-κB, NLRP3, TNF-α, 1L-6, CRP, SIRT1, and MAPK.
Conclusions: Saikosaponin D exhibits a protective effect against STZ-induced gestational diabetes mellitus in rats via regulation of TLR4/ MyD88/NF-κB and MAPK signaling pathways.
Conflict of interest statement
The authors declare that there is no conflict of interest.
Funding
This study received no extramural funding.
Data availability statement
The data supporting the findings of this study are available from the corresponding authors upon request.
Authors’ contributions
LLW and CY performed the experimental study. YQS and FW designed the experimental study. All the authors interpreted and drafted the manuscript.
Publisher’s note
The Publisher of the Journal remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
| [1] |
Szmuilowicz ED, Josefson JL, Metzger BE. Gestational diabetes mellitus. Endocrinol Metab Clin North America 2019; 48(3):479-493.
|
| [2] |
Volkova NI, Davidenko IY, Degtyareva YS. Gestational diabetes mellitus. Akusherstvo i Ginekol 2021; 2021(9):137-142.
|
| [3] |
Wang S, Ma L, Ji J, Huo R, Dong S, Bai Y, et al. Protective effect of soy isolate protein against streptozotocin induced gestational diabetes mellitus via TLR4/MyD88/NF-κB signaling pathway. Biomed Pharmacother 2023; 168. doi: 10.1016/j.biopha.2023.115688.
|
| [4] |
Liu Y, Liu S, Wang H, Su W. Protective effect of caffeic acid on streptozotocin induced gestational diabetes mellitus in rats: Possible mechanism. Pak J Zool 2021; 53(3):1045-1052.
|
| [5] |
Li T, Wang W, Li S, Gong C. Lusianthridin exerts streptozotocin-induced gestational diabetes mellitus in female rats via alteration of TLR4/MyD88/NF-κB signaling pathway. J Oleo Sci 2023; 72(8):775-785.
|
| [6] |
Xu W, Tang M, Wang J, Wang L. Anti-inflammatory activities of puerarin in high-fat diet-fed rats with streptozotocin-induced gestational diabetes mellitus. Mol Biol Rep 2020; 47(10):7537-7546.
|
| [7] |
Yang X, Yang C, Lu W. Berberine suppresses gestational diabetes in streptozotocin-induced diabetes mellitus rats by suppression of inflammatory mediators. Indian J Pharm Educ Res 2023; 57(2):423-431.
|
| [8] |
Jubaidi FF, Zainalabidin S, Taib IS, Abdul Hamid Z, Mohamad Anuar NN, Jalil J, et al. The role of PKC-MAPK signalling pathways in the development of hyperglycemia-induced cardiovascular complications. Int J Mol Sci 2022; 23(15). doi: 10.3390/ijms23158582.
|
| [9] |
He H, Liu Y, Sun M. Nesfatin-1 alleviates high glucose/high lipid-induced injury of trophoblast cells during gestational diabetes mellitus. Bioengineered 2021; 12(2):12789-12799.
|
| [10] |
Wu Q, Gai S, Zhang H. Asperulosidic acid, a bioactive iridoid, alleviates placental oxidative stress and inflammatory responses in gestational diabetes mellitus by suppressing NF-κB and MAPK signaling pathways. Pharmacology 2022; 107(3-4):197-205.
|
| [11] |
Wang H, Chen X, Miao X, Lu K, He M, Wu X. Dendrobium mixture improves gestational diabetes mellitus through regulating Nrf2/HO1 signaling pathway. Biomed Pharmacother 2022;155. doi: 10.1016/j.biopha.2022.113656.
|
| [12] |
Gao T, Wang T, Wu L, Tong Y, Tian J, Zhao K, et al. Saikosaponin-D alleviates depression by promoting NLRP 3 ubiquitination and inhibiting inflammasome activation. Int Immunopharmacol 2024;127. doi: 10.1016/j.intimp.2023.111324.
|
| [13] |
Lu XL, He SX, Ren MD, Wang YL, Zhang YX, Liu EQ. Chemopreventive effect of saikosaponin-D on diethylinitrosamine-induced hepatocarcinogenesis: Involvement of CCAAT/enhancer binding protein β and cyclooxygenase-2. Mol Med Rep 2012; 5(3):637-644.
|
| [14] |
Wu S, Chen W, Liu K, Ren F, Zheng D, Xu F, et al. Saikosaponin D inhibits proliferation and induces apoptosis of non-small cell lung cancer cells by inhibiting the STAT3 pathway. J Int Med Res 2020; 48(9). doi: 10.1177/0300060520937163.
|
| [15] |
Sun K, Du Y, Hou Y, Zhao M, Li J, Du Y, et al. Saikosaponin D exhibits anti-leukemic activity by targeting FTO/m6A signaling. Theranostics 2021; 11(12):5831-5846.
|
| [16] |
Manoharan S, Deivendran B, Perumal E. Chemotherapeutic potential of saikosaponin D: Experimental evidence. J Xenobiotics 2022; 12(4):378-405.
|
| [17] |
Liang J, Sun J, Liu A, Chen L, Ma X, Liu X, et al. Saikosaponin D improves chemosensitivity of glioblastoma by reducing the its stemness maintenance. Biochem Biophys Rep 2022; 32. doi: 10.1016/j.bbrep.2022.101342.
|
| [18] |
Sun B, Yan H, Li C, Yin L, Li F, Zhou L, et al. Beneficial effects of walnut (Juglans regia L.) oil-derived polyunsaturated fatty acid prevents a prooxidant status and hyperlipidemia in pregnant rats with diabetes. Nutr Metab 2020; 17(1). doi: 10.1186/s12986-020-00514-3.
|
| [19] |
Liu Y, Sun R, Lin XP, Wu L, Chen H, Shen S, et al. Procyanidins and its metabolites by gut microbiome improves insulin resistance in gestational diabetes mellitus mice model via regulating NF-κB and NLRP 3 inflammasome pathway. Biomed Pharmacother 2022;151. doi: 10.1016/j.biopha.2022.113078.
|
| [20] |
Liu A, Tanaka N, Sun L, Guo B, Kim JH, Krausz KW, et al. Saikosaponin d protects against acetaminophen-induced hepatotoxicity by inhibiting NF-κB and STAT3 signaling. Chem Biol Interact 2014;223:80-86.
|
| [21] |
Zhou F, Wang N, Yang L, Zhang LC, Meng LJ, Xia YC. Saikosaponin A protects against dextran sulfate sodium-induced colitis in mice. Int Immunopharmacol 2019;72:454-458.
|
| [22] |
Tian ZH, Miao FT, Zhang X, Wang QH, Lei N, Guo LC. Therapeutic effect of okra extract on gestational diabetes mellitus rats induced by streptozotocin. Asian Pac J Trop Med 2015; 8(12):1038-1042.
|
| [23] |
Yao L, Wan J, Li H, Ding J, Wang Y, Wang X, et al. Resveratrol relieves gestational diabetes mellitus in mice through activating AMPK. Reprod Biol Endocrinol 2015; 13(1). doi: 10.1186/s12958-015-0114-0.
|
| [24] |
Lu X, Wu F, Jiang M, Sun X, Tian G. Curcumin ameliorates gestational diabetes in mice partly through activating AMPK. Pharm Biol 2019; 57(1):250-254.
|
| [25] |
Yang J, Jia J, Yang Y, Zhao Y, Li Q. Protective effect of Specnuezhenide on islet β cell of rats with gestational diabetes mellitus. Cell Mol Biol 2020; 66(1):60-64.
|
| [26] |
Cheng Y, Chen J, Li T, Pei J, Fan Y, He M, et al. Maternal vitamin D status in early pregnancy and its association with gestational diabetes mellitus in Shanghai: A retrospective cohort study. BMC Pregnancy Childbirth 2022; 22(1). doi: 10.1186/s12884-022-05149-1.
|
| [27] |
Zheng Y, Zhu N, Wang J, Zhao N, Yuan C. Crocetin suppresses gestational diabetes in streptozotocin-induced diabetes mellitus rats via suppression of inflammatory reaction. J Food Biochem 2021; 45(9). doi: 10.1111/jfbc.13857.
|
| [28] |
Kumar V, Sharma K, Ahmed B, Al-Abbasi FA, Anwar F, Verma A. Deconvoluting the dual hypoglycemic effect of wedelolactone isolated from: Wedelia calendulacea: Investigation via experimental validation and molecular docking. RSC Adv 2018; 8(32):18180-18196.
|
| [29] |
Kumar V, Ahmed D, Verma A, Anwar F, Ali M, Mujeeb M. Umbelliferone β-D-galactopyranoside from Aegle marmelos (L.)corr. An ethnomedicinal plant with antidiabetic, antihyperlipidemic and antioxidative activity. BMC Complement Altern Med 2013;13. doi: 10.1186/1472-6882-13-273.
|
| [30] |
Ma Y, Xu S, Meng J, Li L. Protective effect of nimbolide against streptozotocin induced gestational diabetes mellitus in rats via alteration of inflammatory reaction, oxidative stress, and gut microbiota. Environ Toxicol 2022; 37(6):1382-1393.
|
| [31] |
Li Y, Xie H, Zhang H. Protective effect of sinomenine against inflammation and oxidative stress in gestational diabetes mellitus in female rats via TLR4/MyD88/NF-κB signaling pathway. J Food Biochem 2021; 45(11). doi: 10.1111/jfbc.13952.
|
| [32] |
Yan CY, Sun J, Yu GY, Liu JHZ, Huang RP, Han SC, et al. Tripeptide Leu-Pro-Phe from corn protein hydrolysates attenuates hyperglycemia-induced neural tube defect in chicken embryos. Oxid Med Cell Longev 2022;2022. doi: 10.1155/2022/4932304.
|
| [33] |
Zhang X, Zheng S, Li H. Protective effect of diosmin against streptozotocin-induced gestational diabetes mellitus via AGEs-RAGE signalling pathway. Int J Pharmacol 2022; 18(2):363-373.
|
| [34] |
Shen Z, Yang C, Zhu P, Tian C, Liang A. Protective effects of syringin against oxidative stress and inflammation in diabetic pregnant rats via TLR4/MyD88/NF-κB signaling pathway. Biomed Pharmacother 2020; 131. doi: 10.1016/j.biopha.2020.110681.
|
| [35] |
Baldassarre MPA, Di Tomo P, Centorame G, Pandolfi A, Di Pietro N, Consoli A, et al. Myoinositol reduces inflammation and oxidative stress in human endothelial cells exposed in vivo to chronic hyperglycemia. Nutrients 2021; 13(7). doi: 10.3390/nu13072210.
|
| [36] |
Sha H, Zeng H, Zhao J, Jin H. Mangiferin ameliorates gestational diabetes mellitus-induced placental oxidative stress, inflammation and endoplasmic reticulum stress and improves fetal outcomes in mice. Eur J Pharmacol 2019; 859. doi: 10.1016/j.ejphar.2019.172522.
|
| [37] |
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, et al. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. Med Comm 2023; 4(3). doi: 10.1002/mco2.283.
|
| [38] |
Bhatti JS, Sehrawat A, Mishra J, Sidhu IS, Navik U, Khullar N, et al. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical Biol Med 2022;184:114-134.
|